giá trị ớn nhất của -x^2-4xy-5y^2-6y+1672
giá trị lớn nhất của
-x2-4xy-5y2+6y+1672
Tìm giá trị lớn nhất của - x2 -4xy - 5y 2 + 6y + 1672
\(A=-x^2-4xy-5y^2+6y+1672\)
\(A=-x^2-4xy-4y^2-y^2+6y-9+1681\)
\(A=-\left(x+2y\right)^2-\left(y-3\right)^2+1681\)
\(A=1681-\left[\left(x+2y\right)^2+\left(y-3\right)^2\right]\)
Có: \(\left(x+2y\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow1681-\left[\left(x+2y\right)^2+\left(y-3\right)^2\right]\le1681\)
Dấu = xảy ra khi: \(\left(x+2y\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+2y\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2y=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2y=0\\y=3\end{cases}}\Rightarrow\hept{\begin{cases}x=-6\\y=3\end{cases}}\)
Vậy: \(Max_A=1681\) tại \(\hept{\begin{cases}x=-6\\y=3\end{cases}}\)
tìm GTLN của :-x2 - 4xy - 5y2 + 6y + 1672
Ta có :
\(D=-x^2-4xy-5y^2+6y+1672\)
\(=-\left(x^2+4xy+4y^2\right)-\left(y^2+6y+9\right)+9+1672\)
\(=-\left(x+2y\right)^2-\left(y+3\right)^2+1681\)
Có :
\(\left(x+2y\right)^2\ge0\)
\(\left(y+3\right)^2\ge0\)
\(\Rightarrow-\left(x+2y\right)^2-\left(y+3\right)^2+1681\le1681\)
\(\Rightarrow Max_N=1681\Leftrightarrow\hept{\begin{cases}y=-3\\x=6\end{cases}}\)
Vậy ...
-(x-2y)^2 -(y-3)^2 +1681
Với mọi x, y ta có: -....<=0
=>-.... <= 1681
Dấu = xảy ra khi
x=2y; y=3
=> x=6;y=3
Vậy...
Trần Thủy Dung làm sai rồi +6y=-(-6y) chứ
Cho x^ 2+5y^2 -4xy-6y+9=0 . Tính giá trị của A= 𝑥+𝑦 / x-y
\(x^2+5y^2-4xy-6y+9=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
\(\Rightarrow A=...\)
tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau
a)A=x2-6x+13
b)B=2x2+16x-17
c)C=4x-x2
d)D=x2-4xy+5y2+6y+17
a) A = x2 - 6x + 13 = x2 - 2.x.3 + 33 +4 = (x-3)2 + 4 >= 4 suy ra minA=4
mấy câu kia giải tương tự
Cho các số x y thỏa mãn x^2 + 5y^2 + 2x - 6y - 4xy + 2 = 0. Tính giá trị biểu thức S = x^2020 + (y-2)^2021
phân tích đa thức thành nhân tử
x(y+z)2+y(x+z)2+z(x+y)2
tìm giá trị nhỏ nhất của biểu thức Fvà giá trị tương ứng của x & y
F bằng x2+5y2+4xy+6y-10
Tìm giá trị nguyên x,y thỏa mãn hệ thức sau
x2 - 4xy + 5y2 = 100
4x2 + 2y2 - 4xy + 20x - 6y + 29 = 0
1. x2-4xy + 5y2 = 100\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=100\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=0+10^2=6^2+8^2\)\(\Leftrightarrow\int^{x-2y=0}_{y=10}\)
hoặc \(\int^{x-2y=10}_{y=0}\) hoặc \(\int^{x-2y=6}_{y=8}\) hoặc \(\int^{x-2y=8}_{y=6}\)
từ đó ta tìm được (x;y)= ( 20;10);(10;0) ; ( 24;6) ; ( 20; 6)
2. 4x2 + 2y2 - 4xy + 20x - 6y + 29 = 0 \(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y^2-10y+25\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y-5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left(2x-y+5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\int^{2x-y+5=0}_{y+2=0}\Leftrightarrow\int^{x=\frac{-7}{2}}_{y=-2}\) loại vì x, y nguyên
vậy phương trình đã cho không có nghiệm nguyên
Tìm giá trị nhỏ nhất ( lớn nhất) của các biểu thức:
a) A=x^2-6x+2019
b) B= 2x^2 +9x -15
c) C= 5x-3x^2
d) D= x^2 + 4x +y^2 -6y +2019
e) E= x^2 -4xy +5y^2 +10x -22y+2019