Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoanghoaihoai
Xem chi tiết
Trang Lê Minh Hậu
Xem chi tiết
do binh minh
7 tháng 2 2016 lúc 10:02

minh biet lam ne nhung ban phai cho minh nhe

 

Trang Lê Minh Hậu
7 tháng 2 2016 lúc 10:00

ai giup minh lam bai nay voi 

thanks nhieu

 

Đào Phan Duy Khang
7 tháng 2 2016 lúc 11:02

\(A=\frac{1}{1}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)

\(\frac{1}{2}A=\frac{1}{2}.\left(\frac{1}{1}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)

\(\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{100}{2^{101}}\)

\(\frac{1}{2}A-A=\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)-\left(\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{100}{2^{101}}\right)\)

\(\frac{1}{2}A=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}-\frac{1}{2}-\frac{3}{2^4}-\frac{4}{2^5}-...-\frac{100}{2^{101}}\)

\(\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)

\(\frac{1}{2}A=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}\right)-\frac{100}{2^{101}}\)

\(\frac{1}{2}A=\frac{\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{101}\right]}{\frac{1}{2}}-\frac{100}{2^{101}}\)

A=2

 

 

hoanghoaihoai
Xem chi tiết
hgftvf
Xem chi tiết
Phan Thanh
Xem chi tiết
thân thị huyền
Xem chi tiết
Taehyng Kim
Xem chi tiết
dau thi huyen ly
Xem chi tiết
Nguyễn Thanh Hằng
8 tháng 2 2018 lúc 20:15

\(B=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+.......+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\)

\(\Leftrightarrow2B=1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+........+\dfrac{98}{2^{99}}+\dfrac{99}{2^{100}}\)

\(\Leftrightarrow2B-B=\left(1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+........+\dfrac{99}{2^{100}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+......+\dfrac{100}{2^{100}}\right)\)

\(\Leftrightarrow B=\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)

Đặt :

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{99}}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+......+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{100}}\)

\(\Leftrightarrow B=1-\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)

\(\Leftrightarrow B=\dfrac{2^{100}-101}{2^{100}}\)

Bui Cam Lan Bui
Xem chi tiết
Trần Thị Loan
28 tháng 9 2015 lúc 11:06

\(2.A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)

=> 2.A - A = \(\left(2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)

=> A = \(\left(2+\frac{3}{2^2}-1-\frac{100}{2^{100}}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{2^4}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)\)

A = \(1+\frac{3}{2^2}-\frac{100}{2^{100}}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}=\left(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)+\frac{2}{2^2}-\frac{100}{2^{100}}\)

Tính B = \(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

2.B = \(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\) => 2.B - B = \(1+\frac{1}{2}-\frac{1}{2^{99}}\)=> B = \(\frac{3}{2}-\frac{1}{2^{99}}\)

Vậy A = \(\frac{3}{2}-\frac{1}{2^{99}}+\frac{2}{2^2}-\frac{100}{2^{100}}=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}=2=\frac{2^{101}-102}{2^{100}}\)