Câu hỏi:
P=6/2(x+1)+x/x+1+1/2
Rút gọn P
Câu 1: Rút gọn biểu thức: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{2}}+\dfrac{6}{x+3\sqrt{x}}\right)\) với x > 0
Câu 2: Rút gọn biểu thức:
\(P=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\) với x > 0; x \(\ne\) 2
Câu 3: Rút gọn biểu thức:
\(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\) với a > 0; a \(\ne\) 4
Câu 1:
Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Câu 3:
Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(=a-2\sqrt{a}\)
câu 1 :chia X^2 -6x+15 cho x-3 được kết quả là:
câu 2 cho P= (x+1)^3+(x+1)(6-x2)-12
a. rút gọn P
b. tính P khi x = -1/2
c. tìm x để P =0
1/\(\left(x^2-6x+15\right):\left(x-3\right)\)
Đặt cột dọc ta được x-3 dư 6
2/a/\(p=\left(x+1\right)^3+\left(x+1\right)\left(6-x^2\right)-12\)
\(=x^3+3x^2+3x+1+6x-x^3+6-x^2-12\)
\(=2x^2+9x-11\)
b/thay x = -1/2 ta đc \(2.-\left(\frac{1}{2}\right)^2+9.-\frac{1}{2}-11\)
\(=\frac{1}{2}+\left(-\frac{9}{2}\right)-11\)
\(=\left(-15\right)\)
Cho P = x 4 + 3 x 3 + 5 x 3 + 1 . x + 2 x + 1 . x 2 − x + 1 x 4 + 3 x 3 + 5 . Bạn Mai rút gọn được P = x + 2 ( x − 1 ) 2 , bạn Đáo rút gọn được P = x + 2 x 2 − 1 . Chọn câu đúng
A. Bạn Đào đúng, bạn Mai sai
B. Bạn Đào sai, bạn Mai đúng
C. Hai bạn đều sai
D. Hai bạn đều đúng
Rút gọn: (x+1)^4-6(x+1)^2-(x^2-2)(x^2+2)
(x + 1)^4 - 6(x + 1)^2 - (x^2 - 2)(x^2 + 2)
= (x^2 + 2x + 1)(x^2 + 2x + 1) - 6(x^2 + 2x + 1) - (x^2 - 2)(x^2 + 2)
= x^2.(x^2 + 2x + 1) + 2x.(x^2 + 2x + 1) + x^2 + 2x + 1 - (x^2 - 2)(x^2 + 2)
= x^4 + 2x^3 + x^2 + 2x^3 + 4x^2 + 2x + x^2 + 2x + 1 - 6x^2 - 12x - 6 - x^2 + 2^2
= 4x^3 - 8x - 1
\(\left(x+1\right)^4-6\left(x+1\right)^2-\left(x^2-2\right)\left(x^2+2\right)\)
\(=\left(x^2+2x-5\right)\left(x^2+2x+1\right)-x^4+2\)
\(=x^4+2x^3+x^2+2x^3+4x^2+2x-5x^2-10x-5-x^4+4\)
\(=4x^3-8x-1\)
Câu 1 :Tìm x biết x thuộc Q biết
a, | 2x-5 |+1/3=|-1/6| +2
b,|x2-2x| = x
Câu 2 :Rút gọn biểu thức A =2x-5-3|x+4| ; B=|5x +10| - 2|4-x|
Câu 1 : Rút gọn
(x-1)^2×(x-1)×(x+2)+(x+1)^2
Rút gọn biểu thức sau: (x-2)^3+6(x-1)^2-(x+1)(x^2-x+1)
Giúp mình câu hỏi này với
1.a Rút gọn (x-2)(x^2+2x+4) - x(x-1)(x+1) + 3
b. Thay x là -1/2 để tính kết quả đã rút gọn
2.a Tính 3x(5x^2 - 2xy^2 + y)
b. Tính (x+y)(x^2 - xy + y^2)
3) Tìm x biết : 16x^2 - (4x - 5)^2 = 15
1a) ( x - 2 )( x2 + 2x + 4 ) - x( x - 1 )( x + 1 ) + 3
= x3 - 8 - x( x2 - 1 ) + 3
= x3 - 8 - x3 + x + 3
= x - 5
b) Với x = -1/2 => Giá trị của biểu thức = -1/2 - 5 = -11/2
2a) 3x( 5x2 - 2xy2 + y ) = 15x3 - 6x2y2 + 3xy
b) ( x + y )( x2 - xy + y2 ) = x3 + y3
3) 16x2 - ( 4x - 5 )2 = 15
<=> 16x2 - ( 16x2 - 40x + 25 ) = 15
<=> 16x2 - 16x2 + 40x - 25 = 15
<=> 40x - 25 = 15
<=> 40x = 40
<=> x = 1
=40x ở đâu vậy bạn
Giúp tớ câu này với . Rút gọn C={3x-x2/9-x2 - 1} : {9-x2/x2+x-6 - x-3/2-x - x+2/x+3}
Rút gọn biểu thức P=√x/√x-1 +2/√x+3+2-6√x/ ( √x -1 ) (√x+3)
\(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2}{\sqrt{x}+3}+\dfrac{2-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+3\sqrt{x}+2\sqrt{x}-2+2-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)