chứng minh rằng đa thức P(x) có ít nhất 2 nghiệm biết rằng:
\(x.P_{\left(x+2\right)}=\left(x+3\right).P_{\left(x-1\right)}=0\)
Chứng minh rằng đa thức Q(x) có ít nhất ba nghiệm, biết: (x^2 - 9).Q(x) = (x-1).Q(x - 4)
help
+Với x=1 ta có: \(\left(1^2-9\right).Q\left(1\right)=\left(1-1\right).Q\left(1-4\right)\)
\(\Leftrightarrow-8.Q\left(1\right)=0.Q\left(-3\right)\)
\(\Leftrightarrow-8.Q\left(1\right)=0\)
\(\Leftrightarrow Q\left(1\right)=0\)
Vậy x=1 là 1 nghiệm của đa thức Q(x).
+Với x=3 ta có: \(\left(3^2-9\right).Q\left(3\right)=\left(3-1\right).Q\left(3-4\right)\)
\(\Leftrightarrow0.Q\left(3\right)=2.Q\left(-1\right)\)
\(\Leftrightarrow2.Q\left(-1\right)=0\)
\(\Leftrightarrow Q\left(-1\right)=0\)
Vậy x=-1 là 1 nghiệm của đa thức Q(x).
+Với x=-3 ta có: \([\left(-3\right)^2-9].Q\left(-3\right)=\left(-3-1\right).Q\left(-3-4\right)\)
\(\Leftrightarrow0.Q\left(-3\right)=-4.Q\left(-7\right)\)
\(\Leftrightarrow-4.Q\left(-7\right)=0\)
\(\Leftrightarrow Q\left(-7\right)=0\)
Vậy x=-7 là 1 nghiệm của đa thức Q(x).
Suy ra: đa thức Q(x) có ít nhất 3 nghiệm.(đpcm)
Biết rằng (x2 - 4) P( x + 1) = (x2 - 3) P(x)
Chứng minh rằng đa thức P(x) có ít nhất bốn nghiệm
giup mk vs m.n
Cho đa thức A (x) thỏa mãn Chứng minh rằng đa thức A(x) có ít nhất 2 nghiệm phân biệt.
Câu 1. Cho hai đa thức :
\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x.\)
\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
a) Sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến.
b) Tính P(x) + Q(x) và P(x) - Q(x)
c) Chứng tỏ rằng x=0 là nghiệm của đa thức P(x) nhưng không phải là nghiệm của đa thức Q(x).
Câu 2. Cho đa thức:
\(M\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3.\)
a) Sắp xếp các hạng tử của đa thức theo lũy thừa giảm của biến.
b) Tính M(1) và M(-1).
c) Chứng tỏ rằng đa thức trên không có nghiệm.
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
Bài 1 : Cho \(f\left(x\right)=x^3-2ax+b\). Tìm a,b biết đa thức có hai nghiệm là f(1)=-1 và f(0)=2
Bài 2 . Cho \(f\left(x\right)=x^3-2ax+b\). TÌm a,b biết đa thức có hai nghiệm là 0 và 3
Chứng minh rằng : Có vô số số nguyên x để biểu thức sau là số chình phương :
\(\left(1+2+3+...+x\right)\left(1^2+2^2+3^2+...+x^2\right)\) .
\(H=\frac{x\left(x+1\right)}{2}.\frac{x\left(x+1\right)\left(2x+1\right)}{6}=x^2\left(x+1\right)^2.\frac{2x+1}{12}\)
tồn tại vô số nguyên dương x để \(\frac{2x+1}{12}\) là số chính phương => ...
Cho đa thức bậc ba \(f\left(x\right)\) với hệ số của x3 là một số nguyên dương và biết \(f\left(5\right)-f\left(3\right)=2017\) .Chứng minh rằng \(f\left(7\right)-f\left(1\right)\) là hợp số
Chứng tỏ rằng đa thức
\(A=\left(x^2+1\right)^4+9.\left(x^2+1\right)^3+21\left(x^2+1\right)^2-x^2-41\)
luôn luôn không âm với mọi giá trị của x
A= x^8+4x^6+6x^4+4x^2+1+9x^6+27x^4+27x^2+9+21x^4+42x^2+21-x^2-41
=x^8+13x^6+54x^4+72x^2-10
mọi mũ đều là chẵn
đfcm :))
Đề sai nhé bạn nếu x =0 thì giá trị này nhận kq -10 đấy
Chứng minh rằng phân thức sau đây không phụ thuộc vào x và y :
a, \(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
a, = x^2+a+x^2a+a^2+a^2x^2+1/x^2-a-x^2a+a^2+a^2x^2+1
= (x^2+1).(a^2+a+1)/(x^2+1)(a^2-a+1) = a^2+a+1/a^2-a+1
=> phân thức trên ko phụ thuộc vào biến x
=> ĐPCM
Nếu đúng thì k mk nha