với x =0 => P(x-1) =0
=> x là nghiệm(1)
với x= -3 => p(x+2) =0
=> x=-3 là nghiệm(2)
từ (1) và (2) => dpc/m
với x =0 => P(x-1) =0
=> x là nghiệm(1)
với x= -3 => p(x+2) =0
=> x=-3 là nghiệm(2)
từ (1) và (2) => dpc/m
Tìm đa thức bậc 2 sao cho: \(f_{\left(x\right)}-f_{\left(x-1\right)}=x\)
áp dụng tính tổng: S = 1 + 2 + 3 +...+ n
a) \(\left(x-2\right)\left(x+1\right)< 0\)
b) \(\left(x+\dfrac{1}{3}\right)\left(x-1\right)\)> hoặc = 0
Bài 1: Cho đơn thức
A=\(x^2.\left(\dfrac{-5}{4}x^2y\right)\left(\dfrac{2}{5}x^3y^4\right)\)
B=\(\left(\dfrac{-3}{4}x^4y^4\right)\left(xy^2\right)\left(\dfrac{-8}{9}x^2y^5\right)\)
Biết A>0, thì B mang dấu gì ?
Bài 2: Cho đa thức
A(x)=\(\left(x^2-5x+7\right)^4\left(x^2-3x+3\right)^{20}\)
Tính tổng các hệ số trong đa thức ?
\(a\left(X+1\right).\left(X-2\right)< 0\)
\(b\left(x-2\right).\left(x+\frac{2}{3}\right)>0\)
Tìm nghiệm của đa thức:
\(B=x+2\left(x+1\right)^2-2\)
\(C=x^4.\left(x+2\right)-x^2\)
\(D=3\left|x+2\right|+6\left(x+2\right)^8+6\)
\(H=4\left(x+5\right)^2-2\left|x+3\right|+12\)
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x=\frac{1}{20}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
2. Tìm x, y, z biết\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
3.Tìm x\(a,2009-\left|x-2009\right|=x\)
\(b,\left|3x+2\right|=\left|5x-3\right|\)
Tìm x biết
a,\(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|\left(-3,2\right)+\dfrac{2}{5}\right|b,\left(x-7\right)^{x+1}+\left(x-7\right)^{x+11}=0\)
1.Tính:
\(a,A=\sqrt{12\frac{1}{4}}.\left(\frac{-2}{7}\right)^2-\left[2,\left(4\right).2\frac{5}{11}\right]:\left(\frac{-42}{5}\right)\)
\(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{2016}{3^{2016}}\)
2. Tìm x,y,z biết:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
b) \(\sqrt{\left(x+\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)^2}+\left|x-y-z\right|=0\)
c) \(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}\) và x-2y+3z=14.
d) \(5^x+5^{x+1}+5^{x+2}=3875\).
3. a) Cho bốn số a,b,c,d>0 thỏa mãn: \(\frac{1}{c}=\frac{ }{1}2.\left(\frac{1}{b}+\frac{1}{a}\right)\)và b là trung bình cộng của a và c. Chứng minh rằng bốn số đó lập nên một tỉ lệ thức.
b) Cho tỉ lệ thức: \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) (với a,b,c,d khác 0)
Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)
Bài 4.1: Tìm x, biết
a) \(4\left|3x-1\right|+\left|x\right|-2\left|x-5\right|+7\left|x-3\right|=12\)
b) \(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x-9\right|=5\)
c) \(\left|2\frac{1}{5}-x\right|+\left|x-\frac{1}{5}\right|+8\frac{1}{5}=1,2\)
d) \(2\left|x+3\frac{1}{2}\right|+\left|x\right|-3\frac{1}{2}=\left|2\frac{1}{5}-x\right|\)