CMR nếu tam giác MNP =tam giác NPM thì tam giác MNP là tam giác đều
chứng minh rằng nếu tam giác MNP = tam giác NPM thì tam giác MNP là tam giác đều
vì \(\Delta ABC\)= \(\Delta NPM\)
\(\Rightarrow\)MN = NP ( 2 cạnh tương ứng ) ( 1 )
NP = PM ( 2 cạnh tương ứng ) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)MN = NP = PM
Vậy tam giác MNP là tam giác đều
Giải theo ý của mình nhé :
t/g MNP = t/g NPM ( giả thiết )
=> góc M = góc N
góc N = góc P
góc P = góc M
=> góc M = góc N = góc P
Nên t/g MNP là t/g đều
Ta có \(\Delta MNP=\Delta NPM\)
=> MN = NP (hai cạnh tương ứng)
và NP = PM (hai cạnh tương ứng)
và MP = PM (hai cạnh tương ứng)
=> \(\Delta MNP\)là tam giác đều (theo định nghĩa).
41. Chứng minh rằng nếu tam giác MNP = tam giác NPM thì tam giác MNP là tam giác đều.
Theo giả thiết ta có :
\(\Delta MNP=\Delta NPM\)
Suy ra:
Góc M = góc NGóc N = góc PGóc P = góc N\(\Rightarrow\)Góc M = góc N = góc P
Do vậy nên ta chứng minh được \(\Delta MNP\)là tam giác đều .
__tích_nha_bạn_chúc_bạn_học_giỏi__
Cho tam giác MNP có MN<MP. Tia phân giác của góc M cắt NP tai D.Trên cạnh MP lấy E sao cho MN=ME
a/CmR: Tam giác MND=MEP
b/Nếu tam giác MNP có góc M=90 độ thì đó l tam giác j
a: Xét ΔMND và ΔMED có
MN=ME
\(\widehat{NMD}=\widehat{EMD}\)
MD chung
Do đó: ΔMND=ΔMED
b: Xét ΔMNP có \(\widehat{M}=90^0\)
nên ΔMNP vuông tại M
Cho tam giác MNP có MN = MP; I là trung điểm của NP. Chứng minh rằng: tam giác MNI và tam giác MPI bằng nhau
Cho tam giác MNP có MN=MP, I là trung điểm của NP
a) CMR: tam giác MNI và tam giác MPI bằng nhau
b) CMR: MI là tia phân giác của MNP
c) CMR: MI là đường trung trực của NP
d) Lấy điểm E, F lần lượt trên cạnh MN, MP sao cho NE=PF, CMR: tam giác MEI và tam giác MFI bằng nhau
cho tam giác MNP có 2 đường trung tuyến MI và NQ.Biết MI=NQ .CMR tam giác MNP là tam giác cân
cứu với.......
Cho tam giác ABC có AB=3cm,BC=5cm,AC=6cm và tam giác MNP có MN=9cm,NP=4,5cm,PM=7,5cm.
CMR: tam giác ABC∼tam giác NPM
Giups mk vs ạ ai nhanh mk tick nha :>
Xét ΔABC và ΔNPM có
\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{BC}{PM}\)
Do đó: ΔABC∼ΔNPM
nếu tam giác abc đồng dạng với tam giác mnp theo tỉ số 4 thì tỉ số chu vi của tam giáp abc và tam giác mnp
Ta có: \(\Delta ABC\sim\Delta MNP\left(gt\right)\)
\(\Rightarrow\dfrac{AB}{MN}=\dfrac{BC}{NP}=\dfrac{AC}{MP}=4\)
\(\Rightarrow AB=4MN;BC=4NP;AC=4MP\)
\(\Rightarrow\dfrac{C_{ABC}}{C_{MNP}}=\dfrac{AB+BC+AC}{MN+NP+MP}=\dfrac{4MN+4NP+4MP}{MN+NP+MP}=4\)
Vậy: ...
ΔABC đồng dạng với ΔMNP theo hệ số tỉ lệ là 4
=>Tỉ số chu vi của ΔABC và ΔMNP là 4
Hãy chọn câu đúng. Nếu tam giác ABC đồng dạng với tam giác MNP theo tỉ số k thì tam giác MNP đồng dạng với tam giác ABC theo tỉ số:
A. 1 k 2
B. 1 k
C. k 2
D. k
Vì ΔABC ⁓ ΔMNP theo tỉ số k nên
A B M N = k ⇒ M N A B = 1 k
Nên ΔMNP ⁓ ΔABC theo tỉ số
Đáp án: B
Hãy chọn câu đúng. Nếu tam giác ABC đồng dạng với tam giác MNP theo tỉ số k=2 thì tam giác MNP đồng dạng với tam giác ABC theo tỉ số:
A.2
B. 2
C. 1 2
D. 4
Vì ΔABC ⁓ ΔMNP theo tỉ số k =2 ⇒ M N A B = 1 2
Nên ΔMNP ⁓ ΔABC theo tỉ số M N A B = 1 2
Đáp án: C