Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh AB và CD của tứ diện ABCD là đường vuông góc chung của AB và CD thì AC = BD và AD = BC
Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh AB và CD của tứ diện ABCD là đường vuông góc chung của AB và CD thì AC = BD và AD = BC.
Gọi I, K lần lượt là trung điểm của cạnh AB và CD
Qua K kẻ đường thẳng d // AB, trên d lấy A', B' sao cho K là trung điểm của A'B' và
KA' = IA
* Xét tam giác CKB’ và DKA’ có:
KC= KD ( giả thiết)
KB’= KA’( cách dựng)
( hai góc đối đỉnh )
=> ∆ CKB’ = ∆ DKA’ ( c.g.c)
=> B’C = A’D
*Xét tứ giác IBB’K có IB= KB’ và IB // KB’ ( cách dựng)
=> Tứ giác IBB’K là hình bình hành
=> BB’ // IK (1)
Chứng minh tương tự, ta có: AA’// IK (2)
Từ (1) và (2) suy ra: BB’// IK// AA’ (*)
Lại có:IK ⊥ CK
=> IK ⊥ (CKB') (**)
Từ (*) và (**) suy ra BB' ⊥ (CKB') ; AA' ⊥ (CKB')
⇒ BB' ⊥ B'C; AA' ⊥ A'D
* Xét hai tam giác vuông BCB’ và ADA’ có:
BB’ = AA’ (= IK)
CB’ = A’D (chứng minh trên)
=> ∆ BCB’ = ∆ ADA’ ( cạnh huyền –cạnh góc vuông)
=> BC= AD.
* Chứng minh tương tự, AC = BD
Cho tứ diện ABCD có AB=CD=a, AC=BD=b, AD=BC=c
a, chứng minh: các đoạn nối trung điểm các cặp cạnh đối diện thì vuông góc với 2 cạnh đó
b, Tính cos góc giữa 2 đường thẳng AC và BD
Cho tứ diện ABCD có AB=CD=a, AC=BD=b, AD=BC=c
a, chứng minh: các đoạn nối trung điểm các cặp cạnh đối diện thì vuông góc với 2 cạnh đó
b, Tính cos góc giữa 2 đường thẳng AC và BD
Cho tứ diện ABCD có AB=CD=a, AC=BD=b, AD=BC=c
a, chứng minh: các đoạn nối trung điểm các cặp cạnh đối diện thì vuông góc với 2 cạnh đó
b, Tính cos góc giữa 2 đường thẳng AC và BD
Bài 1 (4đ). Cho tứ giác ABCD có AB//CD. Gọi M, N lần lượt là trung điểm của AC và BD. Gọi O là giao điểm của hai đường thẳng theo thứ tự đi qua M và N tương ứng vuông góc với BC và AD.
a) Chứng minh rằng MN//CD.
b) Chứng minh rằng OC = OD.
cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi E, F lần lượt là trung điểm của AB, BC. Chứng minh rằng đường thẳng đi qua E vuông góc với CD, đường thẳng đi qua F vuông góc với AD và một trong hai đường chéo đồng quy
Cho tứ diện ABCD có AB=CD, BC=DA. Gọi M, N theo thứ tự là trung điểm của CA, BD.
Chứng minh rằng MN là đoạn vuông góc chung của các đường thẳng CA và BD
Đặt \(AB=CD=c\), \(BC=DA=a\) , \(AC=b\) và \(BD=d\)
Do N là trung điểm cạnh BD nên theo công thức tính độ dài đường trung tuyến, ta có :
\(AN^2=\frac{c^2+a^2}{2}-\frac{d^2}{4}\) và \(CN^2=\frac{a^2+c^2}{2}-\frac{d^2}{4}\)
Suy ra : \(NA^2-NC^2=0=MA^2-MC^2\)
Từ đó theo kết quả bài toán suy ra \(MN\perp AC\)
Lập luận tương tự ta cũng được \(MN\perp BD\)
Cho hình trụ có bán kính R và đường cao R√2. Gọi AB và CD là hai đường kính thay đổi của hai đường tròn đáy mà AB vuông góc với CD.
a) Chứng minh rằng ABCD là tứ diện đều.
b) Chứng minh rằng các đường thẳng AC, AD, BC, BD luôn tiếp xúc với một mặt trụ cố định
Hs lớp 12 không biết lên mạng tra xem có không rồi mới hỏi à.-.
Cho tứ diện ABCD có AD = BC = a, BD = CA = b, CD = AB = c. Chứng minh rằng các đường vuông góc chung của các cặp cạnh đối diện đồng quy và đôi một vuông góc với nhau
Gọi I và J lần lượt là trung điểm của AB và CD. Vì ΔACD = ΔBDC nên các tiếp tuyến tương ứng của chúng bằng nhau, do đó AJ = BJ. Từ đó suy ra IJ ⊥ AB. Tương tự, IJ ⊥ CD. Vậy IJ là đường vuông góc chung của AB và CD.
Làm tương tự đối với các cặp cạnh đối diện khác ta chứng minh được rằng đường nối trung điểm của các cặp cạnh đối diện là đường vuông góc chung của cặp cạnh đó. Do đó các đường đó đồng quy tại O là trung điểm của mỗi đường.
Gọi (P) là mặt phẳng qua AB và song song với CD, (Q) là mặt phẳng qua CD và song song với AB; A', B' lần lượt là hình chiếu vuông góc của A, B lên (Q); C', D' lần lượt là hình chiếu vuông góc của C, D lên (P). Dễ thấy AC'BD'.A'CB'D là hình hộp chữ nhật. Đường nối hai tâm của mỗi cặp mặt đối diện của hình hộp chữ nhật đó chính là đường vuông góc chung của các cặp cạnh đối diện của tứ diện ABCD. Do đó chúng đôi một vuông góc với nhau.