chứng tỏ B= 13!-11! chia hết cho 55
dùng các kiến thức đã học, chứng tỏ
a, A=88+220 chia hết cho 17
b, B=13!-11! chia hết cho 55
a) A=88+220 = (23)8 + 220 = 224 + 2^20 = 220(24+1) = (220. 17) chia hết cho 17 => A=88+220 chia hết cho 17
a, Ta có: \(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{20}.2^4+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)
\(\Rightarrow8^8+2^{20}⋮17\)
b, Vì 13! có 2 thừa số 5 và 11 nên \(13!⋮5\)(1)
11! cũng có 2 thừa số là 5 và 11 nên \(11!⋮5\)(2)
Từ (1), (2) \(\Rightarrow13!-11!⋮55\)
a) Ta có :\(8^8+2^{20}\)
\(=\left(2^3\right)^8+2^{20}\)
\(=2^{\left(3.8\right)}+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}.2^4+2^{20}\)
\(=\)\(2^{20}.\left(2^4+1\right)\)
\(=2^{20}.17\)
vì \(2^{20}.17\)chia hết cho 17
Nên \(=>8^8+2^{20}\)chia hết cho 17 (dpcm)
b)\(13!-11!\)chia hết cho 55
\(13!-11!=11!.\left(12.13-1\right)=11!.155\)
11! số thừa số 5 và 11 nên 11!.155 chia hết cho 55 hay 13!-11! chia hết cho 55 (dpcm)
Chứng Tỏ
8^10-8^9-8^8 chia hết cho 55
7^6+7^5-7^4 chia hết cho 11
81^7-27^9-9^13 chia hết cho 45
Chứng tỏ rằng
a) 8^10-8^9-8^8 chia hết cho 55
b) 81^7-27^9-9^13 chia hết cho 45
c) 7^6 +7^5-7^4 chia hết cho 11
d) 10^9+10^8+10^7 chia hết cho 555
a, Đặt A = 810 - 89 - 88 = 88.82 - 88.81 - 88.1 = 88.(82 - 81 -1) = 88.55
Vì 55 chia hết cho 55 nên 88 chia hết cho 55 hay A chia hết cho 55.
b, Đặt B = 76 + 75 - 74 = 74.72 + 74.71 + 74.1 = 74.(72 + 71 - 1) = 74.55
Vì 55 chia hết cho 55 nên 74.55 chia hết cho 55 hay B chia hết cho 55.
c, Đặt C = 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 ( Đến dây thì tương tự như phần a bạn nhé)
d, Phần này cũng tương tự phần a.
Giải:
a) \(8^{10}-8^9-8^8=8^8.\left(8^2-8-1\right)=8^8.55⋮5\)
\(\Rightarrow8^{10}-8^9-8^8⋮55\left(đpcm\right)\)
b) \(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{24}\left(3^4-3^3-3^2\right)=3^{24}.45⋮5\)
\(\Rightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right)\)
c) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮11\left(55⋮11\right)\)
\(\Rightarrow7^6+7^5-7^4⋮11\left(đpcm\right)\)
d) \(10^9+10^8+10^7=10^6.\left(10^3+10^2+10\right)=10^7.1110⋮555\left(1110⋮555\right)\)
\(\Rightarrow10^9+10^8+10^7⋮555\left(đpcm\right)\)
Chứng tỏ rằng
a) 8^10-8^9-8^8 chia hết cho 55
b) 81^7-27^9-9^13 chia hết cho 45
c) 7^6 +7^5-7^4 chia hết cho 11
d) 10^9+10^8+10^7 chia hết cho 555
Câu hỏi của Asari Tinh Nghịch - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài làm của bạn ST nhé!
a) Cho S = 5 + 52+ 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n+ 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
a) Cho S = 5 + 52 + 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n + 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
chứng tỏ a, ab+ba chia hết cho 11
b, 8^10-8^9 chia hết cho 55
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 451 người nhận rồi
OK
Bài 1: chứng tỏ rằng
a) (ab - ba) chia hết cho 9 với a > b
b) (ab + cd) chia hết cho 11 thì abcd chia hết cho 11
c) (abc - deg) chia hết cho 13 thì abcdeg chia hết cho 13