Chứng minh rằng với mọi x nguyên dương thì: \(\left(6^{2x}+19^x-2^{x+1}\right)\) chia hết cho 17
Chứng minh rằng với mọi x nguyên dương thì: \(\left(6^{2x}+19^x-2^{x+1}\right)\) chia hết cho 17
cho đa thức \(P\left(x\right)=2x^4-7x^3-2x^2+13x+6\)
a) Phân tích P(x) thành nhân tử.
b) Chứng minh rằng: P(x) chia hết cho 6 (với mọi x nguyên)
Bài 1: Chứng minh rằng: với mọi số nguyên dương n thì: \(3^{n+2}-2^{n+2}+3^n-2^n\)chia het cho 10
Bai 2: Chung to rang: \(A=75.\left(4^{2004}+4^{2003}+.....+4^2+4+1\right)+25\)la so chia het cho 100
Bài 3: a, Chứng minh rằng: 3a+2b:17 suy ra 10a+b:17 (a,b thuộc Z)
b, Cho da thuc f(x)=\(ax^2+bx+c\) (a,b,c nguyên)
CMR: nếu f(x)chia hết cho 3 với mọi giá trị của x thì a,b,c đều chia hết chia hết cho 3
Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)+ \(3^n-2^n\)= \(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
= \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)= \(3^n\times10-2^{n-1}\times10\)
= 10 \(\times\left(3^n+2^{n+1}\right)\)
chia hết cho 10
Bài 2 :
\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)
= \(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)
chia het cho 100
chứng minh rằng với mọi số nguyên dương n thì đa thức (X-1)^(2n+1)+X^(n+2) chia hết cho đa thức X^2 + X +1
1.Cho a + b = -5 và ab = 6. Tính \(^{a^3-b^3}\)
2.Chứng minh rằng tổng lập phương của một số nguyên với 11 lần số đó là một số chia hết cho 6
3.Chứng minh rằng \(ab\left(a^2-b^2\right)\)chia hết cho cho 6 với mọi số nguyên a,b
4.Chứng minh biểu thức \(x^2-x+\frac{1}{3}>0\)với mọi số thực x
5.Cho \(a+b+c=0.\)Chứng minh rằng H=K biết rằng H=\(a\left(a+b\right)\left(a+c\right)và\)\(K=c\left(c+a\right)\left(c+b\right)\)
6. Với p là số nguyên tố, p>2. Chứng minh \(\left(p^3-p\right)\)chia hết cho 24
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
Chứng minh rằng với mọi số n nguyên dương thì:
a/ (62n + 19n - 2n+1) chia hết cho 17
b/ (7.52n + 12.6n) chia hết cho 19
c/ (5n+2 + 26.5n + 82n+1) chia hết cho 59
\(5^{n+2}+26.5^n+8^{2n+1}\)
\(=5^n.5^2+26.5^n+8^{2n}.8\)
\(=5^n.25+26.5^n+64^n.8\)
\(=5^n.25+34.5^n-8.5^n+64^n.8\)
\(=5^n\left(25+34\right)+8\left(64^n-5^n\right)\)
\(=5^n.59+8\left(64^n-5^n\right)\)
Áp dụng t/c: Nếu \(\left(a-b\right)⋮m\)thì \(\left(a^n-n^n\right)⋮m\)
\(\Rightarrow8\left(64^n-5^n\right)⋮59\)
Mà \(5^n.59⋮59\)nên \(5^{n+2}+26.5^n+8^{2n+1}⋮59\left(đpcm\right)\)
Chứng minh rằng với mọi số nguyên a thì \(a^2\left(a+1\right)+2a\left(a+1\right)\) chia hết cho 6.
\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 3 và có ít nhất 1 số chẵn nên \(a\left(a+1\right)\left(a+2\right)⋮6\)
Vậy \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\left(đpcm\right)\)
Bài 1:
Giải hệ phương trình: \(\left\{{}\begin{matrix}xy+2=2x+y\\2xy+y^2+3y=6\end{matrix}\right.\)
Bài 2:
cho đa thức: \(f\left(x\right)=x^4+6x^3+11x^2+6x\)
a, Phân tích f(x) thành phân tử
b, chứng minh rằng với mọi giá trị nguyên của x thì f(x)+1 luôn có giá trị là số chính phương
Câu 5:
Cho đường tròn (O), đường dính AB cố định. Điểm I nằm giữa A và O sao cho AI=\(\dfrac{2}{3}\) AO. Kẻ dây MN vuông góc với AB tại I. gọi C là một điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E
a, Chứng minh tứ giác IECB nội tiếp
b, Chứng minh AM\(^2\)=AE.AC
c, Chứng minh AE.AC-AI.BI=AI\(^2\)
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU!!
Bài 1:
\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow xy-y+2-2x=0\)
\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Với \(x=1\). Thay vào (2) ta được:
\(2y+y^2+3y=6\)
\(\Leftrightarrow y^2+5y-6=0\)
\(\Leftrightarrow y^2+y-6y-6=0\)
\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)
Với \(y=2\). Thay vào (2) ta được:
\(2x.2+2^2+3.2=6\)
\(\Leftrightarrow4x+4+6=6\)
\(\Leftrightarrow x=-1\)
Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)
Bài 2:
\(f\left(x\right)=x^4+6x^3+11x^2+6x\)
\(=x\left(x^3+6x^2+11x+6\right)\)
\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)
\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)
\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)
\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.
Chứng minh rằng với mọi x nguyên dương thì:
b) 5n(5n+1) -6n(3n+2) chia hết cho 91
gt= 25n + 5n - 18n - 12n
mình kí hịu đồng dư là dd nhak.
* Chứng minh gt chia het cho 7:
25 dd 4 (mod 7) => 25n dd 4n (mod 7)
18 dd 4 (mod 7) => 18n dd 4n (mod 7)
=> 25n - 18n chia hết cho 7.
chứng minh tt 5n - 12n chia hết cho 7
=> gt chia hết cho 7
* Chứng minh gt chia hết cho 13
25 dd -1 (mod 13) => 25n dd (-1)n (mod 13)
12 dd -1 (mod 13) => 12n dd (-1)n (mod 13)
=> 25n - 12n chia hết cho 13
chứng minh tt 5n - 18n chia hết cho 13
Vậy bài toán \(ĐPCM\)