x/y=3/2,z/t=4/5 và x+y=z+t .tính x+t/y+z ,biết y+z khác 0
A.Cho 4 số x y z t thỏa mãn điều kiện X + Y + Z + C khác 0 và y+z+t/x =x+z+t/y =y+x+t/z =y+z+x/t
B, tính giá trị biểu thức M biết
M=2x/y+z+t — 3y/x+z+t + 4z/x+y+t — 5t/x+y+z
Làm rồi nhưng olm không hiện.Hướng dẫn thôi nha.
Cộng 1 vào mỗi vế của giả thiết.Rồi chia tất cả các vế của giả thiết cho x + y + z +t khác 0.
Ta sẽ được: \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{t}\Rightarrow x=y=z=t\)
Đến đây thay vào M: y,z,t bởi x ta sẽ thu được kết quả.
a,Tìm 2 số hữu tỷ a,b biết rằng a—b=2(a+b)=3:b
b,Ba phân số có tổng bằng 213/70 các tử số của chúng tỉ lệ với 3 4 5 các mẫu số của chúng tỉ lệ với 5 1 2 Tìm ba phân số đã cho
Tìm giá trị x y z nguyên dương thỏa mãn 2(x+y+z)=xyz
cho x,y,z,t là 4 số thực khác 0 thỏa mãn y^2=xz,z^2=yt và y^3+z^3+t^ khác 0 cmR y^3+z^3+x^3/y^3+z^3+t^3=x/t
chứng minh rằng nếu x/y=y/z=z/t thì (x+y+x/y+z+t)^3=x/y với y,z,t khác 0 và y+z+t khác 0
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\) và x;y;z;t khác 0
Tính M biết \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
TA CÓ : ( x / y + z + t ) + 1 = ( y / z +t + x ) + 1 = ( t / x + y + z ) + 1
Suy ra : x+y+z+t / y+z+t = x+y+z+t / z+t+x = x+y+z+t / t+x+y = x+y+z+t / x+y+z
do x+y+z+t khác 0 suy ra x=y=z=t suy ra M= 1+1+1+1 =4 tích đúng nha
cho \(^{y^2}\)=x.z,\(z^2\)=y.t.Với x,y,z,t khác 0,y+z khác 0, \(y^3\)+\(z^3\) khác \(t^3\).Chứng minh \(x^3\)+\(y^3\)-2\(z^3\)/\(y^3\)+\(z^3\)-2\(t^3\)=(\(\dfrac{\text{x+y-2z}}{x+z-2t}\))
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\) và x;y;z;t khác 0
Tính M biết \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
cộng 1 vào đẳng thức trên
=> x=y=z=t
=> M = 4 hoặc m=-1
Tìm x,y,z,t biết:
a) 3x - 2y = 0 và x-y=16
b) x:y:z:t = 2:3:4:5 và x+y+z+t = -42
c) 4/x = 6/y và x+y=5}
d) x/3 = y/2 = z/5 và x-y+z = -10,2
Dựa vào tỉ số bằng nhau ta đc:
a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)
Các câu kia tg tự nha
c)
\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)
\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)
\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)
Vậy...
b, x : y : z : t = 2 : 3 : 4 : 5 => x/2 = y/3 = z/4 = t/5
Đặt : x/2 = y/3 = z/4 = t/5 = k => x = 2k ; y = 3k ; z = 4k ; t = 5k
x + y + z + t = -42 => 2k + 3k + 4k + 5k = -42 => 14k = -42 => k = -3
Với k = -3 => x = 2.(-3) = -6 ; y = 3.(-3) = -9 ; z = 4.(-3) = -12 ; t = 5.(-3) = -15
Vậy ...
d,Đặt : x/3 = y/2 = z/5 = k => x = 3k ; y = 2k ; z = 5k
x - y + z = -10,2 => 3k - 2k + 5k = -10,2 => 6k = -10,2 => k = -1,7
Với k = -1,7 => x = 3.(-1,7) = -5,1 ; y = 2 . (-1,7) = -3,4 ; z = 5.(-1,7) = -8,5
Vậy ....
Bài 1:Tìm x;y;z biết:
x:y:z=3:4:5 và 2x^2+2y^2-3z^2
Bài 2:Cho a/b=b/c=c/a và a+b+c khác 0
Tính A=a^49*b^51/c^100
Bài 3:Tìm số nguyên x;y;z;t biết
|x-y|+|y-z|+|z-t|+|t-x|=-2011
Cảm ơn các bạn
Bài 1 : x/3 = y/4 = z/5 => x²/9 = y²/16 = z²/25
=> 2x²/18 = 2y²/32 = 3z²/75
=> x²/9 = (2x² + 2y² - 3z²)/(18 + 32 - 75) = - 100/(-25) = 1/4
=> x²/9 = 1/4 => x² = 9/4 => x = ±3/2
y²/16 = 1/4 => y² = 4 => y = ± 2
z²/25 = 1/4 => z² = 25/4 => z = ±5/2
Mà x, y, z cùng dấu.
Vậy (x ; y ; z) = (3/2 ; 2 ; 5/2) , (-3/2 ; -2 ; -5/2)
B3 ko tìm được x,y,z thỏa mãn do kết quả là 1 số không dương
Cho 4 số x,y,z,t khác 0 thoả mãn điều kiện: (y+z+t-nx)/x=(z+t+x-ny)/y=(t+x+y-nz)/z=(x+y+z-nt)/t (n là số tự nhiên) và x+y+z+t=2012. Tính giá trị biểu thức P=x+2y-3z+t