Xác định hệ số a , b biết P(1) = -5/3 và P(-1/3) = 4/3
P(x) = ax + b
xác định hệ số a;b;c h(x)=ax^6+6x^2-bx^3-2x+4x^3-5x^6+1 biết hệ số cao nhất bằng -4 và hệ số bậc 3 bằng 8
h(x) = ax6 + 6x2 - bx3 - 2x + 4x3 - 5x6 + 1
= ( ax6 - 5x6 ) + ( 4x3 - bx3 ) + 6x2 - 2x + 1
Bậc 6 là bậc cao nhất => a - 5 là hệ số cao nhất
đề bài cho hệ số cao nhất là -4 => a - 5 = -4 <=< a = 1
Hệ số bậc 3 là 8
=> 4 - b = 8 <=> b = -4
h(x) = ax6 + 6x2 - bx3 - 2x + 4x3 - 5x6 + 1
= ( ax6 - 5x6 ) + ( 4x3 - bx3 ) + 6x2 - 2x + 1
Bậc 6 là bậc cao nhất => a - 5 là hệ số cao nhất
đề bài cho hệ số cao nhất là -4 => a - 5 = -4 <=< a = 1
Hệ số bậc 3 là 8
=> 4 - b = 8 <=> b = -4
a) Tìm số a để đa thức ax - 1/2 có nghiệm là x = 1/3
b) Xác định hệ số a,b của đa thức f (x) = ax + b biết f (1) = (-3) và f (2) = 7
a) Ta có a.1/3 - 1/2 = 0
=> a.1/3 = 1/2
=> a = 3/2
Vậy a = 3/2
b) Ta có : f(1) = a.1 + b = a + b = -3
=> a + b = -3 (1)
Lại có f(2) = a.2 + b = 2 x a + b = 7
=> 2 x a + b = 7 (2)
Khi đó 2 x a + b - (a + b) = 7 - (-3)
=> 2 x a - a = 10
=> a = 10
=> b = -13
Vậy a = 10 ; b = -13
a ) Ta có : \(a\cdot\frac{1}{3}-\frac{1}{2}=0\)
\(\Rightarrow a\cdot\frac{1}{3}=\frac{1}{2}\)
\(\Rightarrow a=\frac{3}{2}\)
Vậy \(a=\frac{3}{2}\)
b ) Ta có : \(f\left(1\right)=a\cdot1+b=a+b=-3\)
\(\Rightarrow a+b=-3\)(1)
Lại có : \(f\left(2\right)=a\cdot2+b=2\cdot a+b=7\)
\(\Rightarrow2\cdot a+b=7\)(2)
Khi đó : \(2\cdot a+b-\left(a+b\right)=7-\left(3\right)\)
\(\Rightarrow2\cdot a-a=10\)
\(\Rightarrow a=10;b=-13\)
Vậy ...
cho hàm số y = -ax + 5 hãy xác định hệ số a biết rằng
a, đồ thị hàm số song song với đồ thị y = ax + b\
b, khi x = 1 + √x thì y = -4 - √3
cho hàm số y = -ax + 5 hãy xác định hệ số a biết rằng
a, đồ thị hàm số song song với đồ thị y = ax + b\
b, khi x = 1 + √x thì y = -4 - √3
XÁc định hệ số a và b của đa thức F(x)=ax +b .Biết F(0)=3 và F(1)=2
f(x)=ã+b
f(0)=b=3
f(1)=a+b=2
Thay b=3 vào f(1) ta có:
f(1)=a+3=2 suy ra a=-1
Vậy a=-1;b=3
\(f\left(x\right)=ax+b\)
\(f\left(0\right)=b=3\)
\(f\left(1\right)=a+b=2\)
Thay b = 3 vào f(1)
\(f\left(1\right)=a+3=2\Rightarrow a=-1\)
Vậy b = 3; a = -1
xác định hệ số a,b,c của đa thức P (x) biết
P(x) = ax+b và P(-1) =2;P(3)=-1
Ta có: P(1) = a . 1 + b = a + b = 1 (1)
P(2) = a . 2 + b = 2a + b = 5 (2)
(1) - (2) <=> a = 4
=> b = -3
do p(x)=ax+b
=> p(-1)=-a+b=2 (2)
=>p(3)=3a+b=-1 (1)
từ (1) và (2) suy ra p(-1)-p(3)=-a+b-3a-b=3
=>-4a=3
=>a=-3/4 (3)
thay (3) vào (2) ta được
-(-3/4)+b=2
=> b=5/4
vậy.......
xác định hệ số a và b sao cho x^4 + ax^3 + b chia hết cho x^2 - 1
HELP ME..............
Xác định hệ số a sao cho:
a) x^3 + ax^2 - 4 chia hết cho x^2 + 4x + 4
b) ax^5 + 5x^4 - 9 chia hết cho x - 1
xác định hệ số a, b
a, 10x^2-7x +a chia hết cho 2x-3
b, 2x^2+ax+1 chia cho x-3 dư 3
c, ax^5+5x^4-9 chia hết cho (x-1)^2
d, x^4+4 chia hết cho x^2+ax+b
e, x^2+ax+b chia hết cho x^2+x-2
Xác định hệ số a, b sao cho:
\(x^3+ax+b\) chia cho x + 1 dư 7 và x - 3 dư -5
Đặt:
\(x^3+ax+b=\left(x+1\right)q\left(x\right)+7\left(1\right)\)
\(x^3+ax+b=\left(x-3\right)p\left(x\right)-5\left(2\right)\)
Thay x = -1 và x = 3 lần lượt vào (1) và (2), ta có:
\(\hept{\begin{cases}-1-a+b=7\\27+3a+b=-5\end{cases}\Rightarrow\hept{\begin{cases}-a+b=8\\3a+b=-32\end{cases}\Rightarrow}\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)