Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đỗ hữu phương
Xem chi tiết
Thảo Nguyễn
Xem chi tiết
Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Funny PVD
Xem chi tiết
Nguyễn Linh Anh
Xem chi tiết
Cô Hoàng Huyền
19 tháng 1 2018 lúc 15:06

a) Ta có \(A=\left(x-3\right)^2+\left(x-11\right)^2=x^2-6x+9+x^2-22x+121=2x^2-28x+130\)

\(=2\left(x^2-14x+49\right)+32=2\left(x-7\right)^2+32\ge32\)

Vậy minA = 32 khi x = 7.

b) \(B=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)

Đặt \(x^2-5x=t\Rightarrow B=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)

minB = -36 khi t = 0 hay \(x^2-5x=0\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

binhero chibi
Xem chi tiết
binhero chibi
9 tháng 11 2016 lúc 12:18

giúp mình với các bạn

Nguyễn Thị Huyền
18 tháng 1 2019 lúc 12:55

đương 23

Vũ Minh Đức
Xem chi tiết
Nguyễn Đức Trí
9 tháng 7 2023 lúc 11:22

Bài 1 :

\(A=-x^2+6x+14\)

\(A=-x^2+6x-9+23\)

\(A=-\left(x^2-6x+9\right)+23\)

\(A=-\left(x-3\right)^2+23\)

Vì \(-\left(x-3\right)^2\le0\)

\(\Rightarrow A=-\left(x-3\right)^2+23\le23\)

\(\Rightarrow Max\left(A\right)=23\)

Bài 2 :

\(B=4x^2+12x+30\)

\(\Rightarrow B=4x^2+12x+9+21\)

\(\Rightarrow B=\left(2x+3\right)^2+21\)

Vì \(\left(2x+3\right)^2\ge0\)

\(\Rightarrow B=\left(2x+3\right)^2+21\ge21\)

\(\Rightarrow Min\left(B\right)=21\)

Lizy
Xem chi tiết

Với mọi a;b ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\)

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

Áp dụng:

\(A=\left(x+3\right)^4+\left(7-x\right)^4\ge\dfrac{1}{2}\left[\left(x+3\right)^2+\left(7-x\right)^2\right]^2\)

Tiếp tục áp dụng BĐT ban đầu trong 2 số hạng trong ngoặc vuông:

\(\Rightarrow A\ge\dfrac{1}{2}\left[\dfrac{1}{2}\left(x+3+7-x\right)^2\right]^2=1250\)

Dấu "=" xảy ra khi \(x+3=7-x\Rightarrow x=2\)

Vậy \(A_{min}=1250\) khi \(x=2\)

Không tồn tại A max

Hokage Minato
Xem chi tiết
Yen Nhi
2 tháng 7 2021 lúc 21:12

\(A=2+\frac{21}{\left(x+3y\right)^2}+5\left|x+5\right|+14\)

Ta có:

\(\left(x+3y\right)^2\ge0;\left|x+5\right|\ge0\)

\(\Leftrightarrow\left(x+3y\right)^2+5\left|x+5\right|+14\ge14\)

\(\Leftrightarrow\frac{21}{\left(x+3y\right)^2}+5\left|x+5\right|+14\le\frac{21}{14}=\frac{3}{2}\)

\(\Leftrightarrow A\le\frac{2}{3}+\frac{3}{2}=\frac{13}{6}\)

Dấu '' = '' xảy ra khi: 

\(x+5=0\Leftrightarrow x=-5\)

\(x+3y=0\Leftrightarrow y=\frac{-x}{3}=\frac{5}{3}\)

Vậy \(MaxA=\frac{13}{6}\Leftrightarrow x=-5;y=\frac{5}{3}\)

Khách vãng lai đã xóa