giải phương trình:
\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\) (với x là ẩn)
giải phương trình sau ;\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)(x là ẩn số)
Giải phương trình:\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)(x là ẩn số)
Ta có: \(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{a+b-x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{2x-a-b}{x\left(a+b-x\right)}=\frac{a+b}{ab}\)
\(\Leftrightarrow ab\left(2x-a-b\right)=\left(a+b\right)\left(a+b-x\right)x\)
\(\Leftrightarrow x^2\left(a+b\right)-x\left(a^2+b^2\right)-ab\left(a+b\right)=0\)
Ta có :\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{a+b-x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{2x-a-b}{x\left(a+b-x\right)}=\frac{a+b}{ab}\)
\(\Leftrightarrow x^2\left(a+b\right)-x\left(a^2+b^2\right)-ab\left(a+b\right)=0\)
Cho phương trình ( ẩn x, a là tham số)
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3a+1\right)}{a^2-x^2}\)
a) Giải phương trình với a=-3
b) Giải phương trình khi a=1
c) Tìm các giá trị của a để phương trình nhận x=\(\frac{1}{2}\) là nghiệm
a) ĐKXĐ : \(x\ne\pm a\).
Với \(a=-3\) khi đó ta có pt :
\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)
\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)
\(\Leftrightarrow2x^2+6x+24=0\)
\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )
Phần b) tương tự.
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)
\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)
\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)
\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)
\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)
\(\Leftrightarrow2ax=3a^2+a\)
\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)
a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)
b) a=1
\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)
tìm tham số a cho phương trình - 4x - 3 = 4x - 7 nhận x = 2 là nghiệm
Cho phương trình (ẩn x, a là tham số)
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3a+1\right)}{a^2-x^2}\)
a) Giải phương trình với a=-3
b) Giải phương trình khi a=1
c) Tìm các giá trị của a để phương trình nhận \(x=\frac{1}{2}\)là nghiệm
a) \(ĐKXĐ:x\ne\pm3\)
Với a = -3
\(\Leftrightarrow A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2-x^2}\)
\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}=\frac{24}{9-x^2}\)
\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}+\frac{24}{x^2-9}=0\)
\(\Leftrightarrow\frac{-\left(x-3\right)^2-\left(x+3\right)^2+24}{x^2-9}=0\)
\(\Leftrightarrow-x^2+6x-9-x^2-6x-9+24=0\)
\(\Leftrightarrow-2x^2+6=0\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\pm\sqrt{3}\)(tm)
Vậy với \(a=-3\Leftrightarrow x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
b) \(ĐKXĐ:x\ne\pm1\)
Với a = 1
\(\Leftrightarrow A=\frac{x+1}{1-x}-\frac{x-1}{1+x}=\frac{3+1}{1-x^2}\)
\(\Leftrightarrow\frac{x+1}{1-x}-\frac{x-1}{1+x}+\frac{4}{x^2-1}=0\)
\(\Leftrightarrow\frac{-\left(x+1\right)^2-\left(x-1\right)^2+4}{x^2-1}=0\)
\(\Leftrightarrow-x^2-2x-1-x^2+2x-1+4=0\)
\(\Leftrightarrow-2x^2+2=0\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)(ktm)
Vậy với \(a=1\Leftrightarrow x\in\varnothing\)
c) \(ĐKXĐ:a\ne\pm\frac{1}{2}\)
Thay \(x=\frac{1}{2}\)vào phương trình, ta đươc :
\(A=\frac{\frac{1}{2}+a}{a-\frac{1}{2}}-\frac{\frac{1}{2}-a}{a+\frac{1}{2}}=\frac{a\left(3a+1\right)}{a^2-\frac{1}{4}}\)
\(\Leftrightarrow\frac{a+\frac{1}{2}}{a-\frac{1}{2}}+\frac{a-\frac{1}{2}}{a+\frac{1}{2}}-\frac{3a^2+a}{a^2-\frac{1}{4}}=0\)
\(\Leftrightarrow\frac{\left(a+\frac{1}{2}\right)^2+\left(a-\frac{1}{2}\right)^2-3a^2-a}{a^2-\frac{1}{4}}=0\)
\(\Leftrightarrow a^2+a+\frac{1}{4}+a^2-a+\frac{1}{4}-3a^2-a=0\)
\(\Leftrightarrow-a^2-a+\frac{1}{2}=0\)
\(\Leftrightarrow a^2+a-\frac{1}{2}=0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2-\frac{3}{4}=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}\\a=-\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{-\sqrt{3}-1}{2}\end{cases}}\)(TM)
Vậy với \(x=\frac{1}{2}\Leftrightarrow a\in\left\{\frac{\sqrt{3}-1}{2};\frac{-\sqrt{3}-1}{2}\right\}\)
Giải phương trình :
\(a,\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}-\frac{1}{x}\)(x là ẩn số )
\(b,\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}\)
Giải phương trình với ẩn x
a) \(\frac{x+a-1}{a+2}+\frac{x-a}{a-2}+\frac{x-a}{4-a^2}=0\)
b) \(\frac{x-a}{b+c}+\frac{x-b}{a+c}+\frac{x-c}{a+b}=3\)
Mn júp mk vs
giải phương trình ẩn chứa ở mẫu
a)\(\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
b)\(\frac{x-3}{x-2}+\frac{x+2}{x-4}=-1\)
b) \(\frac{x-3}{x-2}+\frac{x+2}{x-4}=-1\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{x^2-7x+12+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)
.................
a) \(\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x+3\right)\left(x-1\right)}{\left(x+1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\frac{2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)}{x^3-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\left(x^3-1\right)\left[2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)\right]=\left(x^3-1\right)\left(2x-1\right)\left(2x+1\right)\)
\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)=\left(2x-1\right)\left(2x+1\right)\)
\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)
\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-\left(4x^2-1\right)=0\)
\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-4x^2+1=0\)
\(\Rightarrow3x=0\)
\(\Rightarrow luon-dung-voi-moi-x\)
nhầm phải là
3x=0
=>không có giá trị x thỏa mãn yêu cầu
Giải các phương trình sau:
\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)với x là ẩn và abc(ab+bc+ca)≠0
bài 1 giải phương trình
a) \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
B) \(\frac{2}{\left(1-3x\right)\left(3x+11\right)}=\frac{1}{9x^2-6x+1}-\frac{3}{\left(3x+11\right)^2}\)
Bài 2 cho ẩn z
\(\frac{z}{3z+z}-\frac{z}{z-3a}=\frac{a^2}{9a^2-z^2}\)
a) giải phương trình khi a=1
b) tìm cá giá trị a khi z=1