\(\dfrac{1}{a+b-x}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{x}\\\Leftrightarrow\dfrac{1}{a+b-x}-\dfrac{1}{x}=\dfrac{1}{a}+\dfrac{1}{b}\\\Leftrightarrow\dfrac{2x-a-b}{(a+b-x).x}=\dfrac{a+b}{ab}\\\Leftrightarrow x(a+b)(a+b-x)=ab(2x-a-b)\\\Leftrightarrow x(a+b)^{2}-x^{2}(a+b)=2abx-ab(a+b)\\\Leftrightarrow x(a^{2}+b^{2})+2abx-x^{2}(a+b)=2abx-ab(a+b)\\\Leftrightarrow x^{2}(a+b)-x(a^{2}+b^{2})-ab(a+b)=0\)
Đến đây bạn giải và biện luận pt bậc 2 ẩn x là xong