a) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{7}{15}\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{7}{15}x-\frac{7}{15}=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{7}{15}x-\frac{7}{15}-\frac{3}{5}x+\frac{7}{15}=0\)
\(\Leftrightarrow\frac{8}{15}x=0\)
\(\Leftrightarrow x=0\)