1) Số dư của A = 3^n+2 + 2^n+3 + 3^n+1 + 2^n+2 khi chia cho 6
2) Nếu \(\frac{x}{y+1}=\frac{3}{5}\) thì 5x+1 = ?
1 tìm số nguyên x biết
4\(\frac{1}{3}\).\(\left(\frac{1}{6}-\frac{1}{2}\right)\)<=x <= \(\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
2 một số tự nhiên a khi chia cho 4 dư 3 chia cho 17 dư 9 chia cho 19 dư 13 . Hỏi khi a chia cho 1292 thì số dư là bao nhiêu ?
3 tìm các số nguyên tố p sao cho p+20 , p+40 củng là nguyên tố
4 so sánh
\(\frac{2008}{2009}và\frac{2009}{2010}\)
5 cho n điểm nối từng cặp 2 điểm
a,có bao nhiêu đoạn thẳng nếu trong n điểm dó có 3 điểm ko thẳng hàng
b, có bao nhiêu đoạn thẳng nếu trong n điểm dó có đúng 3 điểm thẳng hàng
c , tính n biết rằng có tất cả 2080 đoạn thẳng
6 cho 3 tia chung gốc Ox,Oy,Oz biết gốc xOz = 120 độ ,gốc yOz = 35 độ tính gốc xOy
ai trả lời cả cách làm là mih ko cần nhanh
1.Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em,khi chia cho 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 6 dư 5 ,chia 10 dư 9.Tìm số học sinh khối 6
2.Tìm các số nguyên n biết rằng
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
1.Cho A=4+4^1+4^2+....+4^24.Chứng minh A chia hết cho 20&420
2.Chứng minh rằng:Với n thuộc N,thì n+3&2n+5 là hai số nguyên tố cùng nhau
3.Cho m,n thuộc N*.Tìm ƯCLN(4m+3n;5m+2n)
4.Tìm số tự nhiên nhỏ nhất,biết,biết chia số đó cho 29 thì dư 5,chia cho 31 dư 28
5.Tổng sau có chia hết cho 15 không?Vì sao?
A=2+2^2+2^3+2^4+....+2^100
6.\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{x+1}+5^{2x+3}}{131}\)
7.Tìm n thuộc N sao cho:(n+4) chia hết cho (n-2)
8.Cho n thuộc N*:Chứng minh rằng:n^3+11n chia hết ch 6
9.Tìm x,y thuộc N sao cho xy-5x+y=17
10.Ba bạn Hồng,Hương,Huệ đến chơi câu lạc bộ thể dục đều đặn.Hồng cứ 12 ngày đến 1 lần,Hương cứ 12 ngày đến 1 lần,Huệ cứ 8 ngày đến 1 lần.Hỏi sau lần đến chung đầu tiên ,thì bao lâu nữa ba bạn lại gặp nhau ở câu lạc bộ lần thứ hai?Lúc đó mỗi bạn đã đến câu lạc bộ mấy lần?
Trả lời
Mk làm câu 5 Trước nha !
Tổng sau không chia hết cho 5 vì, không có số hạng nào trong tổng hia hết cho 5.
Chúc bạn hok tốt !
Câu 4 :
Không có số tự nhiên thỏa mãn yêu cầu đề bài.
Hok tốt !
Trl :
Bạn kia làm đúng rồi nhé !
Học tốt nhé bạn @
Bài 1:Tìm 2 số tự nhiên a và b biết tổng UCLN và BCNN của chúng là 15
Bài 2;Tìm x biết: 1) \(-\frac{2}{3}\left(x-\frac{1}{4}\right)=\frac{1}{3}\left(2x-1\right)\)
2)\(\frac{1}{5}.2^x+\frac{1}{3}.2^{x+1}=\frac{1}{5}.2^7+\frac{1}{3}.2^8\)
Bài 3:Tìm các số nguyên n sao cho: \(^{n^2+5n+9}\)là bội của n+3
Bài 4:Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
Bài 5:Tìm x nguyên thỏa mãn:|x+1|+|x-2|+|x+7|=5x-10
Bài 6;Tìm 3 số có tổng bằng 210, biết rằng 6/7 ST1 bằng 9/11 ST2 và 9/11 ST2 bằng 2/3 ST3
Bài 7: Tìm 2 số biết tỉ số của chứng bằng 5:8 và tích của chứng bằng 360
Mình đang cần gấp.Các bạn giúp nha
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
Bài 1 : Cho 2 số a và b thỏa mãn a+b=1.Chứng minh a^3+b^3+ab>=\(\frac{1}{2}\)
Bài 2:Tìm đa thức f(x) biết F(x) chia x+2 dư 10,chia x-2 dư 24,chia \(x^2-4\) được thương -5x và còn dư.
Bài 3 : Tìm dư khi chia \(x^{2015}+x^{1945}+x^{1930}+x^2-x+1\) cho \(x^2-1\)
Bài 4 : Cho ba số a,b,c khác 0 thỏa mãn\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{b}+\frac{c}{b}+\frac{b}{a}\) chứng minh a=b=c
1/ \(a^3+b^3+ab=\left(a+b\right)\left(a^2+b^2-ab\right)+ab=a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2=\frac{1}{2}\)
2/ \(F\left(x\right)=P\left(x\right).\left(x+2\right)+10\Rightarrow F\left(-2\right)=10\)
\(F\left(x\right)=Q\left(x\right).\left(x-2\right)+24\Rightarrow F\left(2\right)=24\)
Do \(x^2-4\) bậc 2 nên đa thức dư tối đa là bậc nhất có dạng \(ax+b\)
\(F\left(x\right)=R\left(x\right).\left(x^2-4\right)+ax+b\)
Thay \(x=-2\Rightarrow F\left(-2\right)=-2a+b=10\)
Thay \(x=2\Rightarrow F\left(2\right)=2a+b=24\)
\(\Rightarrow\left\{{}\begin{matrix}-2a+b=10\\2a+b=24\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{7}{2}\\b=17\end{matrix}\right.\) \(\Rightarrow\) dư \(\frac{7}{2}x+17\)
3/Vì đa thức chia có bậc 2 nên đa thức dư có bậc 1, có dạng ax+b. Ta có :\(x^{2015}+x^{1945}+x^{1930}+x^2-x+1=Q\left(x\right).\left(x^2-1\right)+ax+b\)Thay x=1 được 4=a+b(1)
Thay x=-1 được 2=-a+b(2)
Cộng (1) và (2) được 6=2b suy ra b=3, từ đó suy ra a=1
Vậy dư là x+3
Bài 3:
Do \(x^2-1\) bậc 2 nên đa thức dư tối đa bậc nhất, giả sử có dạng \(ax+b\)
\(\Rightarrow x^{2015}+x^{1945}+x^{1930}+x^2-x+1=P\left(x\right).\left(x^2-1\right)+ax+b\)
Thay \(x=1\Rightarrow4=a+b\)
Thay \(x=-1\Rightarrow2=-a+b\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=4\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)
Đa thức dư là \(x+3\)
Câu 4:
Đặt \(\left(\frac{a}{b};\frac{b}{c};\frac{c}{a}\right)=\left(x;y;z\right)\)
\(\Rightarrow x^2+y^2+z^2=x+xz+yz\)
Hmm, nhìn đến đây thì đoán bạn viết nhầm đề, đề đúng chắc vế phải là \(\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\)
Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?
Bài 1: Tìm x biết:
a. \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)
b. \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+..+\frac{4}{41.45}=\frac{29}{45}\)
c. \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+2\right)}:2\)
d. (x-20) . \(\frac{\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2000}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}=\frac{1}{2000}\)
Bài 2:
\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n,a\right)\in Nsao\)
Bài 3:
a)\(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)
b) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
c) \(\frac{x}{2}+\frac{y}{3}=\frac{x+y}{2+3}\)
d) \(\frac{x-1}{9}+\frac{1}{3}=\frac{1}{y+2}\)
tung từng vế một thôi
bạn nhác quá éo chịu suy nghĩ
bài này dễ vl
Bài 1:
a, \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)
\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\frac{1}{5x+6}=\frac{1}{2011}\)
=> 5x + 6 = 2011
5x = 2011 - 6
5x = 2005
x = 2005 : 5
x = 401
b, \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
=> x = 15
c, ghi lại đề
d, ghi lại đề
Bài 2:
\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
1 tìm số nguyên x biết
413.(\(\frac{1}{6}-\frac{1}{2}\) )<=x <= \(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\)
2 một số tự nhiên a khi chia cho 4 dư 3 chia cho 17 dư 9 chia cho 19 dư 13 . Hỏi khi a chia cho 1292 thì số dư là bao nhiêu ?
3 tìm các số nguyên tố p sao cho p+20 , p+40 củng là nguyên tố
4 so sánh
\(\frac{2008}{2009}và\frac{2009}{2010}\)
5 cho n điểm nối từng cặp 2 điểm
a,có bao nhiêu đoạn thẳng nếu trong n điểm dó có 3 điểm ko thẳng hàng
b, có bao nhiêu đoạn thẳng nếu trong n điểm dó có đúng 3 điểm thẳng hàng
c , tính n biết rằng có tất cả 2080 đoạn thẳng
6 cho 3 tia chung gốc Ox,Oy,Oz biết gốc xOz = 120 độ ,gốc yOz = 35 độ tính gốc xOy
ai làm đúng làm tất cả có đầy đủ là mih tick
Bài 1: Cho \(A=\frac{1}{x-2}+\frac{x^2-x-2}{x^2-7x+10}-\frac{2x-4}{x-5}\)
a, Rút gọn A b,Tìm x nguyên để A nguyên
Bài 2: Cho \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)
a, Tìm điều kiện xác định của M b, Rút gọn M c, Tính giá trị của M khi \(\left|x\right|=\frac{1}{2}\)
Bài 3: Cho biểu thức \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}\cdot\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)
a, Rút gọn N b,Tính giá trị của N khi \(y=\frac{1}{2}\) c,Tìm giá trị của y để N luôn có giá trị dương
qqwweerrttyyuuiioopp
âsđffgghhjjkkll
zzxxccvvbbnnmm