Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Ánh Huyền
Xem chi tiết
Bùi Hiền Thảo
7 tháng 4 2016 lúc 20:42

Ta có :

\(S=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+..+2016}\)

    \(=2015.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+2016}\right)\)

    \(=2015.\left(1+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2016+1\right).2016}{2}}\right)\)

    \(=2015.\left(\frac{2}{2}+\frac{2}{2.\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{2016.\left(2016+1\right)}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2.\left(2+1\right)}+\frac{1}{3.\left(3+1\right)}+...+\frac{1}{2016.\left(2016+1\right)}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\) 

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2017}\right)\)

    \(=2015.2.\left(1-\frac{1}{2017}\right)\)

    \(=2015.2.\frac{2016}{2017}\)

    =\(\frac{2015.2.2016}{2017}\)

    =\(\frac{8124480}{2017}\)

Vậy \(S=\frac{8124480}{2017}\)

 

    

Võ Kim Khoa
7 tháng 4 2016 lúc 21:19

yeu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Võ Đinh Quốc Toản
5 tháng 9 2017 lúc 9:17

Sai vì ngoài học tập ra còn cần phải siêng năng chăm chỉ trong các lĩnh vực khác nửa như giúp đỡ mọi người ,tham gia các hoạt động rèn luyện

Nguyễn Thị Hải Vân
Xem chi tiết
Đức Phạm
14 tháng 8 2017 lúc 13:48

a, \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2012\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}=\frac{1}{2012}\)

b, \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+1}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{\frac{2017}{1}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}=\frac{1}{2017}\)

Huỳnh Nguyên Phát
Xem chi tiết
vu dinh dat
21 tháng 3 2017 lúc 16:34

bằng 15 hay sao ý

Linh Hương
Xem chi tiết
X1
26 tháng 3 2019 lúc 22:17

\(B=1+3+3^2+3^3+3^4+...+3^{2015}-\frac{3^{2016}}{2}\)

\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{2016}-\frac{3^{2017}}{2}\)

\(\Rightarrow2B=3^{2016}-\frac{3^{2017}}{2}-1+\frac{3^{2016}}{2}\)

\(=3^{2016}-1-\left(\frac{3^{2017}}{2}-\frac{3^{2016}}{2}\right)\)

\(=3^{2016}-1-\frac{3^{2017}-3^{2016}}{2}\)

\(\Rightarrow B=\frac{\left(3^{2016}-1-\frac{3^{2017}-3^{2016}}{2}\right)}{2}\)

Bùi Hùng Minh
26 tháng 3 2019 lúc 22:23

 

<br class="Apple-interchange-newline"><div></div>B=1+3+32+33+34+...+32015320162 

Đặt \(A=1+3+3^2+...+3^{2015}\)

\(A=1+3+3^2+...+3^{2015}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2016}\)

\(\Rightarrow2A=3^{2016}-1\)

\(\Rightarrow A=\frac{3^{2016}-1}{2}\)

\(\Rightarrow B=\frac{3^{2016}-1-3^{2016}}{2}=\frac{-1}{2}\)

Bùi Hùng Minh
26 tháng 3 2019 lúc 22:24

lỗi hiển thị 1 chút,bn thông cảm

Lê Xuân Hiếu
Xem chi tiết
tôi thích hoa hồng
24 tháng 3 2017 lúc 21:14

wow lấy ở đâu zậy
 

Ngo Huy Hoang
Xem chi tiết
Minh Triều
13 tháng 8 2015 lúc 19:49

Đăng từng bài thôi         

Lê Ánh Huyền
Xem chi tiết
Đào Phương Thảo
7 tháng 4 2016 lúc 20:34

=2015/2016

Hoàng Nữ Linh Đan
Xem chi tiết
Đàm Ngọc Luyện
Xem chi tiết
Nguyễn Mạnh Trung
Xem chi tiết
dieuduyen
20 tháng 3 2017 lúc 20:04

Đặt \(A=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.......+\frac{2}{2015}+\frac{1}{2016}\)

\(=\frac{2015}{2}+1+\frac{2014}{3}+1+...........+\frac{1}{2015}+1\)

\(=\frac{2017}{2}+\frac{2017}{3}+.........+\frac{2017}{2015}+\frac{2017}{2016}\)

\(=2017.\left(\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2015}+\frac{1}{2016}\right)\)

Thay A vào biểu thức ta dc

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2017}}{A}\)

\(=\frac{\frac{1}{2017}}{2017}\)\(=1\)

CÓ THỂ LÀ SAI NÊN BẠ THÔNG CẢM CHO MK

Nguyễn Mạnh Trung
20 tháng 3 2017 lúc 20:30

sai rôi bạn ơi