Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ThanhNghiem
Xem chi tiết
HT.Phong (9A5)
7 tháng 10 2023 lúc 10:41

a) ĐKXĐ: \(x\ne2y,x\ne-y;x\ne-1\) 

b) \(B=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\) 

\(B=\left[\dfrac{y-x}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{4x^4+4x^2y+y^2-4}{x\left(x+y\right)+\left(x+y\right)}\)

\(B=\left[\dfrac{\left(y-x\right)\left(x+y\right)}{\left(x-2y\right)\left(x+y\right)}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

\(B=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x+y\right)\left(x-2y\right)}:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

\(B=\dfrac{-2x^2-y+2}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)

\(B=\dfrac{-\left(2x^2+y-2\right)}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)

\(B=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(2x^2+y+2\right)}\)

Event Truy Kích
Xem chi tiết
TFboys_Lê Phương Thảo
25 tháng 6 2016 lúc 8:02

(x-y)3+(x+y)3+(y-x)3-3xy(x+y)

=x3-3x2y+3xy2-y3+x3+3x2y+3xy2+y3+y3-3y2x+3yx2-x3-3x2y-3xy2

=x3+x3-x3-3x2y+3x2y-3yx2-3x2y+3xy2+3xy2-3y2x-3xy2-y3+y3+y3

=x3+y3

tong ngoc quynh
Xem chi tiết
Khánh Linh
Xem chi tiết
Thu Thao
8 tháng 2 2021 lúc 9:23

\(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\) \(\left(x,y\ne0;x\ne\pm y\right)\)

\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{y^2-x^2}.\dfrac{y^2-x^2}{4xy}\)

\(=\dfrac{1}{x^2+2xy+y^2}+\dfrac{1}{4xy}\)

\(=\dfrac{6xy+x^2+y^2}{4xy\left(x+y\right)^2}\)

Nguyễn Lê Phước Thịnh
8 tháng 2 2021 lúc 12:58

Ta có: \(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\)

\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x-y\right)}{4xy}\)

\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{4xy}\)

\(=\dfrac{4xy}{4xy\left(x+y\right)^2}+\dfrac{x^2+2xy+y^2}{4xy\left(x+y\right)^2}\)

\(=\dfrac{x^2+6xy+y^2}{4xy\left(x+y\right)^2}\)

tôi là bánh trôi
Xem chi tiết
Tẫn
1 tháng 11 2018 lúc 15:25

\(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right).\)

\(=x.\left(x^2-4^2\right)-\left(x^2-1\right)\)

\(=x^3-16x-x^2+1\)

\(=x\left(x^2-4^2-x\right)+1\)

\(\)

thuyhang tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 14:18

Bài 2:

a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-14x=-4\)

hay \(x=\dfrac{2}{7}\)

b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)

\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)

\(\Leftrightarrow x^3=-8\)

hay x=-2

Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 14:20

Bài 1: 

a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)

\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)

\(=xy\)

=1

b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)

\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)

\(=x^2-y^2\)

\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)

huy tạ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 22:20

\(\dfrac{1}{y-x}\cdot\sqrt{x^6\left(x-y\right)^2}\)

\(\dfrac{1}{y-x}\cdot x^3\cdot\left(x-y\right)\)

\(=-x^3\)

Hoàng Như Trâm
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
29 tháng 10 2017 lúc 17:08

Ta có :

\(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=\left(2x\right)^2\)

Thay \(x=-10\) vào biểu thức vừa rút gọn ta được :

\(\left(2.-10\right)^2=400\)

An Nguyễn Bá
29 tháng 10 2017 lúc 17:11

\(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=4x^2\)

Thay x=-10 vào biểu thức trên ta được:

\(4.\left(-10\right)^2=4.10^2=4.100=400\)

Vậy giá trị của biểu thức \(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\) tại x=-10 là 400

Hà Thu Giang
Xem chi tiết