Nếu \(\frac{x}{y+1}=\frac{3}{5}\) thì 5x+1 bằng
Nếu \(\frac{x}{y+1}=\frac{3}{5}\) thì 5x+1=.....
Giải
y là :
5 - 1 = 4
Vậy x là : 3
5x + 1
= 53 + 1 = 54
Ta có : \(\frac{x}{y+1}=\frac{3}{5}\)
\(\Rightarrow x=3;y=4\)
\(\Rightarrow5x+1=3.5+1=16\)
nếu \(\frac{x}{y+1}=\frac{3}{5}\)thì 5x+1=......
x/y+1=3/5
=> 5x = 3ỹ3
=> 5x+1 = 3y +3+1
=> 5x+1 = 3y + 4
=> điều kiện là 5x+1=3y+4
ủng hộ nhé
Theo bai ra x/y+1=3/5
suy ra 5x=3y+3
suy ra 5x+1=3y+3+1
5x+1=3y+4
Từ bài => 5x= (y+1)*3 =>5x =3y+3 => 5x+1=3y+4
Nếu \(\frac{5x+2y}{3}=\frac{y-4x}{5}\) và x + 3y = -8 thì 13(x+y) = ?
Tính tỉ lệ thức bằng cách tìm x,y,z
a. 3(x-1)=2(y-2) ; 4(y-2)=3(z-3) và 2x+3y-z= 50
b.\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}và-x-y-z=-49\)
c.\(\frac{x}{y}=\frac{3}{2};\frac{y}{z}=\frac{5}{7}và\left|2x-3y+5z\right|=1\)
d.\(\frac{1+4y}{13}=\frac{1+6y}{19}=\frac{1+8y}{5x}\)
Mấy bn lm ơn jup mk nka, mk cần gấp ik. Lm đc câu nào thì làm nk
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)
Trường hợp 1: 2x-3y+5z=-1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)
Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5
Trường hợp 2: 2x-3y+5z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)
Do đó: x=15/70=3/14; y=1/7; z=1/5
1) Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 thì (p-1)(p+1) chia hết cho 24
2) Tìm giá trị của m để phương trình \(\frac{m}{x-1}+\frac{5x}{x+1}=5\) (ẩn x) có nghiệm lớn hơn hoặc bằng 3
3) Chứng minh rằng: \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{198^2}+\frac{1}{200^2}< \frac{1}{2}\)
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{200^2}+\frac{1}{200^2}+...+\frac{1}{200^2}\left(100\text{số hạng}\right)\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{100}{200^2}< \frac{100}{200}=\frac{1}{2}\)
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{2}\left(đpcm\right)\)
bài tớ sai rồi -_-' chưa lại hộ
\(=\frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{1.2}+...+\frac{1}{99.100}\right)\)
\(=\frac{1}{2^2}.\left(1+1-\frac{1}{100}\right)=\frac{1}{4}.2-\frac{1}{400}=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)
Tìm x,y,z( nếu có):
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
b) 3x=2y, 7y=5z và x-y+z=32
c) \(\frac{x}{3}=\frac{y}{4},\frac{y}{3}=\frac{z}{5}\)và 2x-3y+z=6
Nếu có phần nào là căn thì mn đừng làm nhé ^^
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
a) ) Ta có:\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra: \(\frac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)
b) 3x=2y, 7y=5z \(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
Suy ra: \(\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=2\Rightarrow z=42\)
c) \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\Rightarrow\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
Suy ra: \(\frac{2x}{18}=3\Rightarrow2x=54\Rightarrow x=27\)
\(\frac{3y}{36}=3\Rightarrow3y=108\Rightarrow y=36\)
\(\frac{z}{20}=3\Rightarrow z=60\)
1) Số dư của A = 3^n+2 + 2^n+3 + 3^n+1 + 2^n+2 khi chia cho 6
2) Nếu \(\frac{x}{y+1}=\frac{3}{5}\) thì 5x+1 = ?
giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\frac{2y-5x}{3}+5=\frac{y+27}{4}-2x\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\end{matrix}\right.\)
Tìm x, y, z biết rằng:
a) \(\frac{x-y}{3}=\frac{x+y}{2}=\frac{1}{2}\)
b) \(\frac{2x-5}{y+1}=\frac{x-1}{3y}=\frac{1}{3}\)
c) \(\frac{2x+5}{5}=\frac{y+6}{4}\) và 5x - 3y = -64
Chỉ có câu c) là cho biết 5x-3y=-64 hả bn