Tìm x,y thuộc Z 2x^2y-x^2-2y-2=0
Tìm x,y thuộc Z, biết: 2x^2y - x^2 - 2y - 2 = 0
\(2x^2y-x^2-2y-2=0\Leftrightarrow x^2\left(2y-1\right)-\left(2y-1\right)-3=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(2y-1\right)=3=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)=1.3=3.1\)
Tới đây giải nghiệm nguyên như bình thường
x^4-y^4+z^4+2x^2y^z+3x^2+4z^2+1=0 tìm x,y thuộc z
Tìm x,y thuộc Z biết
x^2-2x+2^2y-2^y+3+17=0
Tìm x,y thuộc Z biết
x^2-2x+2^2y-2^y+3+17=0
Cho x y thuộc Z thỏa mãn
`x^2`+ `2xy` + `7x` + `7y` + `2y^2` + `10` = `0`
tìm gtnn và gtln của S= 2x+2y+2023
bài 1:tìm x thuộc Z
a,(2x-6).(x+2)= 0
b,(x^2+7).(x^2-25)=0
c,|2x-1|=4
d,(x^2-9).(x^2-49)=0
bài 2: tìm x,y thuộc Z
a,(x-3).y=15
b,x.(2y-1)=18
c,(3x-1).(2y+3)=28
1a) (2x - 6)(x + 2) = 0
=> \(\orbr{\begin{cases}2x-6=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=6\\x=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b) (x2 + 7)(x2 - 25) = 0
=> \(\orbr{\begin{cases}x^2+7=0\\x^2-25=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=-7\\x^2=25\end{cases}}\)
=> x ko có giá trị vì x2 \(\ge\)0 mà x2= -7
hoặc x = \(\pm\)5
suy ra 2x-6 =0 hoặc x+2=0
sau đó bạn giải từng trường hợp
1c) |2x - 1| = 4
=> \(\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}}\)
=> \(\orbr{\begin{cases}2x=5\\2x=-3\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
vì x \(\in\)Z => ko có giá trị x
d) (x2 - 9)(x2 - 49) = 0
=> \(\orbr{\begin{cases}x^2-9=0\\x^2-49=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=9\\x^2=49\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm3\\x=\pm7\end{cases}}\)
tìm x;y thuộc z biết x^2y-2y+2x-15=0
Xin chào các bạn !!!
Hãy Đăng Kí Cho Channel Kaito1412_TV Để nhé !
Link là : https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber
Tìm x,y thuộc Z
2x^2y -x^2 - 2y -2=0
Tìm x, y thuộc Z, biết :
( 2x — 10 )^2 ( 4 + 2y )^2 = 0
(2x-10)^2 > 0;(4-2y)^2 > 0
=>(2x-10)^2+(4-2y)^2 > 0
mà theo đề:(2x-10)^2+(4-2y)^2=0
=>(2x-10)^2=(4-2y)^2=0
+)2x-10=0=>2x=10=>x=5
+)4-2y=0=>2y=4=>y=2
vậy x=5;y=2