Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Thanh Hoa
Xem chi tiết
Tạ Duy Phương
3 tháng 12 2015 lúc 18:22

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (dúng)

Huỳnh Nhật Trung
Xem chi tiết
zZz Cool Kid_new zZz
1 tháng 10 2019 lúc 18:32

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(true\right)\)

phạm ngọc nhi
Xem chi tiết
_Guiltykamikk_
8 tháng 4 2018 lúc 18:41

Ta có :

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)

\(=\frac{b+a}{ab}-\frac{4}{a+b}\)

\(=\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\)

\(=\frac{a^2+b^2+2ab-4ab}{ab\left(a+b\right)}\)

\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng ) ( do a;b > 0 )

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}a-b=0\\a;b>0\end{cases}}\Rightarrow a=b>0\)

Vậy ...

Nguyễn Hữu Lâm
Xem chi tiết
Hoàng Như Quỳnh
22 tháng 6 2021 lúc 14:47

vì \(a+b+c=1\)

\(< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{b}{c}+\frac{a}{c}\)

\(=3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

ta có pt:

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\right)\)

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{3}{4}+\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\)

áp dụng bđt cô- si( cauchy) gọi pt là P 

\(P\ge2\sqrt{\frac{ab}{a^2+b^2}\frac{a^2+b^2}{4ab}}+2\sqrt{\frac{bc}{b^2+c^2}\frac{b^2+c^2}{4bc}}+2\sqrt{\frac{ca}{c^2+a^2}\frac{c^2+a^2}{4ca}}+\frac{3}{4}\)

\(P\ge2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}\)

\(P\ge2.\frac{1}{2}+2.\frac{1}{2}+2.\frac{1}{2}+\frac{3}{4}\)

\(P\ge1+1+1+\frac{3}{4}=\frac{15}{4}\)

dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

<=>ĐPCM

Khách vãng lai đã xóa
Hày Cưi
Xem chi tiết
Kim
Xem chi tiết
Phạm Thị Thùy Linh
3 tháng 5 2019 lúc 21:35

Xét hiệu :

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)

\(=\frac{b+a}{ab}-\frac{4}{a+b}\)

\(=\frac{a+b}{ab}-\frac{4}{a+b}\)

\(=\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\)

\(=\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\)

\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)

Có \(\left(a-b\right)^2\ge0\)

Mà a , b dương \(\Rightarrow\)\(ab\left(a+b\right)\ge0\)

\(\Rightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)

Hay \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)

Shinichi Kudo
3 tháng 5 2019 lúc 22:01

\(\frac{1}{a}\)\(\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\)\(\frac{b\left(a+b\right)}{ab\left(a+b\right)}+\frac{a\left(a+b\right)}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)

\(\Rightarrow\)b( a  + b ) + a( a + b ) \(\ge\)4ab

\(\Leftrightarrow\)ab + b2 + a2 + ab - 4ab  \(\ge\)0

\(\Leftrightarrow\)a2  -  2ab + b2 \(\ge\)

\(\Leftrightarrow\)( a - b )2 \(\ge\)0 (  luôn đúng với \(\forall\)a , b)

Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

tth_new
4 tháng 5 2019 lúc 10:32

Bạn tham khảo bài làm của mình tại đây: Câu hỏi của Phạm Thị Thắm Phạm - Toán lớp 8 

Nguyen trung dung
Xem chi tiết

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)       (*)

<=>\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

<=>\(\frac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\ge0\)

<=>\(\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)

<=>\(\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(1)

Vì (1) luôn đúng \(\forall a,b\subsetℕ^∗\)

Nên (*) đúng

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
27 tháng 4 2021 lúc 21:36

biến đổi tương đương như bạn kia hoặc Bunyakovsky dạng phân thức cũng được 

Khách vãng lai đã xóa
Nguyễn Huy Tú
27 tháng 4 2021 lúc 21:46
Câu trả lời bằng hình

Bài tập Tất cả

Khách vãng lai đã xóa
Binh Hang
Xem chi tiết
Thành Thái Đặng Trần
26 tháng 9 2016 lúc 21:01

a + b=1 và a,b>0
Áp dụng bất đảng thức cauchy . \(a+b\ge2\sqrt{a.b}\)  dấu = xảy ra khi a=b

Vậy \(a.b\le\frac{\left(a+b\right)2}{4}=\frac{1}{4}\)

\(\Rightarrow\) \(a.b+2\le\frac{1}{4}+2=\frac{9}{4}\)

\(\Rightarrow\)\(\frac{1}{\sqrt{ab+2}}\ge\frac{1}{\sqrt{\frac{9}{4}}}=\frac{2}{3}\)(1)

Có \(\frac{1}{a+1},\frac{1}{b+1}\)cũng là số dương nên áp dụng Cauchy có : \(\frac{1}{a+1}+\frac{1}{b+1}\ge2\frac{1}{\sqrt{\left(a+1\right)\left(b+1\right)}}=\frac{2}{\sqrt{ab+a+b+1}}=\frac{2}{\sqrt{a.b+2}}\) (2)

Từ (1) thay vào (2) có
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{2}{\sqrt{a.b+2}}\ge2.\frac{2}{3}=\frac{4}{3}\left(đpcm\right)\)

Dấu = xảy ra \(\Leftrightarrow\)a = b = \(\frac{1}{2}\)
 

alibaba nguyễn
26 tháng 9 2016 lúc 21:44

\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{\left(1+1\right)^2}{a+b+1+1}=\frac{4}{3}\)

Trung Hoàng
Xem chi tiết
Trí Tiên亗
25 tháng 2 2020 lúc 16:40

Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :

\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)

\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow bm=an\)

Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .

Khách vãng lai đã xóa