Để \(x^4+2x^3-4x^2+ax+b\) chia hết cho \(x^2-1\) thì \(a+b\) có giá trị là _____________
a) tìm x
2x(2x+7)=4(2x+7)
b) Với giá trị của a thì đa thức x3-4x2+ax chia hết cho đa thức x-3
c) Chứng minh rằng : A = 3x2-4x+1 luôn có giá trị dương với mọi giá trị của biến
a)2x(2x+7)=4(2x+7)
2x(2x+7)-4(2x+7)=0
(2x+7)(2x-4)=0
\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)
b)Ta có:x3-4x2+ax=x3-3x2-x2+ax
=x2(x-3)-x(x-a)
Để x3-4x2+ax chia hết cho x-3 thì a=3
bạn làm luôn caai c đc không mkk sẽ tích cho bạn
Bài 1: Tìm giá trị của a để :
a) A = 2x2 + ax +1 chia hết cho
B = x - 3
b) C = 12x2 - 14x + a - 6x3 + x4 chia hết cho
D = x2 - 4x +1
c) M = 2x4 - 5x3 + 2x2 + ax - 1 chia hết cho
N = x2 - x - 1
các bn ơi giúp mink với
Bài 1: Xác định a,b để
a) 10x^2 - 7x + a chia hết 2x-3
b) 2x^2 + ax +1 chia cho x-3 dư 4
c) x^3 + ax^2 - 4 chia hết cho x^2 + 4x +4
Bài 5: Tìm a, b để: x^4-3x^3+3x^2+ax+b chia hết cho x^2-3x+2
Bài 6: Tìm x thuộc Z để giá trị của biểu thức: x^3+2x-x^2+7 chia hết cho giá trị của biểu thức x^2+1
3x+7=28
3x =28-7
3x =21
x =21:3
x =7
a) Với giá trị nào của a và b thì đa thức x3 + ax2 + 2x + b chia hết cho đa thức x2 + x +1
b) Với giá trị nào của a và b thì đa thức x4 + x3 + x2 + ax + b chia hết cho đa thức x2 + 2x + 2
\(\left(x^3+ax^2+2x+b\right)=\left(x^2+x+1\right)\left(cx+d\right).\)
\(x^3+ax^2+2x+b=cx^3+x^2\left(c+d\right)+x\left(c+d\right)+d\)
Đồng nhất 2 vế có
\(x^3=cx^3\Rightarrow c=1\)
\(2x=x\left(c+d\right)\Leftrightarrow2x=x\left(1+d\right)\Rightarrow d=1\)
\(ax^2=x^2\left(c+d\right)\Rightarrow a=2\)
\(b=d\Rightarrow b=1\)
2/ Câu B tương tự nha bạn
MK làm theo phương pháp hệ số bất định
a, Vì số bị chia có bậc 3 mà số chia có bậc 2 nên thương sẽ có bậc 1
Hệ số của thương là : x3:x2=x
Gọi đa thức thương là : x + c
\(x^3+ax^2+2x+b=\left(x^2+x+1\right).\left(x+c\right)\)
\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2c+x^2+cx+x+c\)
\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2\left(c+1\right)+x\left(c+1\right)+c\)
Theo pp hệ số bất định
\(\Rightarrow\hept{\begin{cases}a=c+1\\2=c+1\\b=c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\c=2-1=1\\b=c=1\end{cases}}\)
Vậy a = 2 ; b = 1
Câu b tương tự nhé
1. làm tính chia
a) (x^4-2x^3+4x^2-8x):(x^2+4)
b) (x^4-4x63+16x-16):(x^2-4)
c) (2x^4-10x^3-5x^2+15x-3):(2x^2-3)
d) (x^2-4x+4):(2-x)
2. tìm số nguyên x để giá trị đa thức A chia hết cho giá trị của đâ thức B
a)A=8x^2-4x+1
B=2x+1
b)A=2x^3-3x^2+2x+2
B=x^2+1
Tìm a, b để: a) 2x^3 - x^2 + ax + b chia hết x^2 - 1;
b) x^4 + x^3 + ax^2 + 4x + b chia hết x^2 - 3x + 2
c) 3x^3+ax^2+bx+9 chia hết cho x^2-9
Giúp mk nha mn
Tìm giá trị của a,b để:
2x3+7x2+ax+b chia hết cho x2+x-1
x4-3x3+3x2+ax+b chia cho x2-3x+4 dư x-5
Để x^4 + 2x^3 - 4x^2 + ax + b chia hết cho x^2 - 1 thì a + b có giá trị là: ...
Giải chi tiết nhé, cảm ơn!
xác định a,b để A(x) chia hết cho B (x)
A(x)=ax^3+bx-24 B(x)=x^2+4x+3
A(x) = 2x^3 +7x^2+ax+b B(x)=x^2+x-1
A(x) =6x^4-x^3+ax^2+bx+4 B(x)=x^2-4
làm mẫu 1 phần thôi men còn lại tự làm
giải
a)
Để \(A\left(x\right)⋮B\left(x\right)\)\(\Leftrightarrow\hept{\begin{cases}b-3a+16a=0\\24-12a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+13.2=0\\a=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-26\\a=2\end{cases}}\)