TÌM GTLN a,-3-|a+2| |
|
1 cho biểu thức A=5x(xy^2-2xy)-5x^2y^2. Rút gọn A .b) Tính GT của A khi x=-1/2 ,y=2
2. Tìm GTLN của bt A = |x-7|-|x-9|.Q= |x-2|+|x-8| b) tìm GTLN của bt P= 9-2|x-3|
TÌM GTLN GTNN (NẾU CÓ) CỦA:
a, A= |x-7|+6-x
b, B= x+1/2-|x-2/3|
Tìm GTLN
1) A=-2x^2+2005
2)B=49/(3x-1)^2+7
3)D=x^2=7/x^2+2
Tìm GTLN, GTNN:
a) A = | x - 3 | + 10
b) B = -7 + ( x - 1 )^2
c) C = -3 - | x + 2 |
d) D = 15 - ( x - 2 )^2
e) F = - ( y - 7 )^2 - | x + 5 | + 3
a) A = |x - 3| + 10
Vì |x - 3| >= 0
=> A = |x - 3| + 10 >= 10
A = 10 <=> |x - 3| = 0=> x - 3 = 0 => x = 3
Vậy: Amin = 10 <=> x = 3
b) B = -7 + (x - 1)2
Vì (x - 1)2 >= 0
=> B = -7 + (x - 1)2 >= -7
B = -7 <=> (x - 1)2 = 0 => x - 1 = 0 => x = 1
Vậy: Bmin = -7 <=> x = 1
a) GTNN cua A=10 khi x=3
b) GTNN cua B=-7 khi x=1
c) GTLN cua C=-3 khi x=-2
d) GTLN cua D=15 khi x=2
e) GTLN cua E=3 khi x=-5 y=7
Bài 1:tìm gtnn của
A=3+(x-7)^2
B=|2x-1|-3
C=7+ căn bậc 2 của 2
Bài 2 tìm gtln của
A=7-(x+3)^2
B=11-|2x-5|
C=25-căn bậc,2 của x+3
1. Tìm GTNN
A= |x-3|+|x-5|+|x-7|
B=(x-2)2 + |y-x|+3
C=|x-1|+|x-2|+|x-3|+x-5|
1. Tìm GTLN
a, A=\(\frac{1}{2\left(x-2\right)^2+3}\)
b,B=|x|-|x-2|
2.tìm GTNN của
A=/x+3/+10(/a/ là gttđ nha^^)
B=-7+(x-1)^2
1.tìm GTLN của
A=-3-/x+2/
B=15-(x-2)^2
AI TRÌNH BÀY HAY MK TK LIỀN NHA ^.^!!!
Bài 1:
a, (x+1)^2-(x-1)^2-3(x+1)(x-1)
b, 5(x+2)(x-2)-1/2(6-8x)^2+17
Bài 2: Tìm x
a, 25x^2-9=0
b, (x+4)-(x+1)(x-1)=16
c, (2x-1)^2 +(x+3)^2-5(x+7)(x-7)=0
Bài 3: Tìm GTNN
A= x^2+5X=7
Bài 4 : Tìm GTLN
B= 6x -x^2-5
Bài 5:Cho x-y=-5. Tính giá trị của N=(x-y)^3-x^2+2xy-y^2
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3
Tìm GTLN của biểu thức sau
1) A = 6-2(5x+3)\(^2\) 2) B = \(\dfrac{13}{\left(9+x\right)^2+10}\) 3) C = -3(2x-1)2 -7
1: (5x+3)^2>=0
=>2(5x+3)^2>=0
=>A<=6
Dấu = xảy ra khi x=-3/5
2: (x+9)^2+10>=10
=>B<=13/10
Dấu = xảy ra khi x=-9
3: -3(2x-1)^2<=0
=>-3(2x-1)^2-7<=-7
Dấu = xảy ra khi x=1/2
A) tìm GTLN của biểu thúc A=(3x^2+6x+10)/(x^2+2x+3)
B) cho x>0 thỏa mãn x^2+1/x^2=7. tính giá trị của biểu thức B=x^2+1/x^2
a) \(A=\frac{3x^2+6x+10}{x^2+2x+3}\)
\(A=\frac{3x^2+6x+9+1}{x^2+2x+3}\)
\(A=\frac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}\)
\(A=\frac{3\left(x^2+2x+3\right)}{x^2+2x+3}+\frac{1}{x^2+2x+1+2}\)
\(A=3+\frac{1}{^{\left(x+1\right)^2+2}}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-1\)