cho tam giác ABC vuông tại A. M là trng điểm củaAC
chứng minh rằng: a) KC =AC
b) AK //BC
Cho tam giác ABC vuông tại A, M là trung điểm AC. Trên tia đối của tia MB lấy K sao cho MK = MB. Chứng minh rằng:
a/ KC vuông góc với AC
b/ AK song song với BC
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
cho tam giác abc =8cm ac=12cm lấy điểm m trên cạnh ab sao cho bm=2cm lấy điểm n trên cạnh ac sao cho bn,ac,cn =3cm a, chứng minh rằng mn//bc b,gọi k là trung điểm của bc, tia ak cắt mn tại i, chứng minh rằng ni/kc=ai/ak c, chứng minh rằng i là trung điểm của mn
a: AM=6-2=6cm
AN=12-3=9cm
=>AM/AB=AN/AC
=>MN//BC
b: Xet ΔAKC có NI//KC
nên NI/KC=AI/AK
Xét ΔABK có MI//BK
nên MI/BK=AI/AK
=>NI/KC=MI/BK
c: NI/KC=MI/BK
KC=KB
=>NI=MI
=>I là tđ của MN
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm K sao cho MK=MB. Chứng minh:
a, KC vuông góc với AC
b, AK // BC
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
Cho tam giác ABC vuông tại A, gọi M là trung điểm của AC. trên tia đối của tia MBlấy điểm K sao cho MK=MB. Chứng minh
a) KC vuông góc với AC
b) AK sông song BC
a,Xét tam giác AMB và tam giác CMK có:
AM=MB(M là trung điểm của AC)
góc AMB=góc CMK
BM=KM(gt)
=> TAm giác AMB=tam giác CMK(c.g.c)
=> góc BAM=góc KCM (hai cạnh tương ứng)
Vậy KC vuông góc với AC
b,Theo câu a ta có tam giác AMB=tam giác CMK (c.g.c)
=>AB=CK (hai cạnh tương ứng) (1)
Mặt khác AB vuông góc với AC và CK vuông góc với AC (theo câu a) nên:
AB song song với CK (2)
Từ (1) và (2) => AKCB là hình bình hành (Tứ giác có hai cạnh song song và bằng nhau)
Vậy AK song song với BC
cho tam giác abc vuông tại a có m là trung điểm của ac . trên tia đối của tia mb lấy điểm k sao cho mk = mb .
a , chứng minh tamgiác bmc = tam giác kma
b chứng minh bc song song ak
c, chứng minh kc vuông góc ac
vẽ hình lun nha
Cho tam giác ABC vuông tại A có AB bé hơn AC lấy D là trung điểm của AC Trên tia đối của CB lấy điểm E sao cho de = c b a) Chứng minh tam giác ADB bằng tam giác c d e câu b Vẽ đường thẳng vuông góc với AC tại D cắt BC tại k Chứng minh AK = KC và góc AB K = góc KAB câu c Trên tia AC lấy điểm H sao cho D là trung điểm của kh Chứng minh a,h,e thẳng hàng
Cho tam giác ABC có góc A=90 độ,M là trung điểm của AC . Trên tia đối của tia MB lấy điểm K sao cho MK= MB . Chứng minh rằng:
a) KC vuông góc với AC .
b) AK song song với BC .
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
Bài 2: Cho tam giác ABC có góc A=90độ, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm K sao cho MK = MB. Chứng minh rằng:
a) KC vuông góc với AC
b) AK // BC
ta ko vẽ hình nhoa
a,
xét \(\Delta ABM\)VÀ \(\Delta CKM\)CÓ:
\(AM=CM\)(vì M là trung điểm của AC)
\(BM=KM\)(gt)
\(\widehat{AMB}=\widehat{KMC}\)(đối đỉnh)
\(\Rightarrow\Delta ABM=\Delta CKM\left(c.g.c\right)\)
\(\Rightarrow\widehat{KCM}=\widehat{BAM}=90^o\)(cặp góc tương ứng)
hya \(KC\perp AC\)
b,
Vì ΔAMK=ΔCMB(c−g−c) :
\(\Rightarrow\widehat{MKA}=\widehat{MBC}\)
Mà 2 góc này ở vị trí so le trong nên :
AK//BC(dpcm)
học tốt ạ
Xét tam giác MAB và tam giác MKC ta có:
MA=MC ( M là TĐ của AC)
\(\widehat{BMA}\)= \(\widehat{KMC}\)( Đối đỉnh)
MB= MK (gt)
=> tam giác MAB = tam giác MCK (c.g.c)
=> \(\widehat{MBA}\)= \(\widehat{MKC}\)( góc tương ứng )
Mà 2 góc này nằm ở vị trí so le trong nên AB // CK
Mà AB vuông góc với AC
=> KC vuông góc với AC
b) Xét tam giác AMC và tam giác AMK ta có:
MA=MC ( M là TĐ của AC )
\(\widehat{AMK}\)= \(\widehat{BMC}\)( Đối Đỉnh )
MB = MK ( gt )
=> tam giác BMC = tam giác KMA (c.g.c)
=> \(\widehat{MBC}\)= \(\widehat{MKA}\)( góc tương ứng )
Mà 2 góc này nằm ở vị trí so le trong
=> AK // BC
a) Xét ΔΔABM và ΔΔCKM có:
MB = MK
MA = MC (M là trung điểm của AC)
AMBˆ=CMKˆAMB^=CMK^ (đối đỉnh)
<=> ΔΔABM = ΔΔCKM (c - g - c)
=> MCKˆ=BAMˆ=90oMCK^=BAM^=90o (hai góc tương ứng)
<=> đpcm.
b) Xét ΔΔAMK và ΔΔCMB có:
AM = CM (chứng minh trên)
BM = MK
AMKˆ=BMCˆAMK^=BMC^ (đối đỉnh)
<=> ΔΔAMK = ΔΔCMB (c - g - c)
=> KAMˆ=BCMˆKAM^=BCM^ (hai góc tương ứng)
Chúng bằng nhau tại vị trí so le trong <=> đpcm.
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm K sao cho MK = MB. Chứng minh:
a. KC vuông góc với AC
b. AK // BC.
hộ mk với ạ