a-b=444
(a-b)-b=123
tìm a,b
Cho A = 444^666 và B= 666^444 so sánh A và B
A= 2009x2011 Và B = 2010mũ 2
b, A=333 mũ 444 Và B = 444 mũ 333
c, A= 3 mũ 450 và B = 5 mũ 300
So sánh à bạn?
a)
Ta có: \(A=2009.2011\) \(\)
\(A=2009.\left(2010+1\right)\)
\(A=2009.2010+2009\left(1\right)\)
\(B=2010^2\)
\(B=2010.2010\)
\(B=2010\left(2009+1\right)\)
\(B=2009.2010+2010\left(2\right)\)
Từ (1) và (2) => \(A< B\)
b)\(A=333^{444}\)
\(A=\left(3.111\right)^{4.111}\)
\(A=\left(3^4.111^4\right)^{111}\)
\(A=\left(81.111^4\right)^{111}\)
\(B=444^{333}\)
\(B=\left(4.111\right)^{3.111}\)
\(B=\left(4^3.111^3\right)^{111}\)
\(B=\left(64.111^3\right)^{111}\)
=>\(A>B\)
1) Cho A=444^666 va B=666^444. So sanh A va B
a. chứng minh rằng(a+b) x (a-b) =a2x b2
b. so sánh 333444 và 444333
b, 333444 = (3.111)4.111 = (81.1114)111
444333 = (4.111)3.111 = (64.1113)111
Vì (81.1114)111 > (64.1113)111 nên 333444 > 444333
\(333^{444}=111^{444}.3^{444}=111^{444}.81^{111}>111^{333}.64^{111}=111^{333}.4^{333}=444^{333}\)
so sanh A va B : A = 333444va B = 444333
Ta có:
A = 333444 = (111.3)444 = 111444.3444 = 111333.111111.3444
B = 444333 = 111333.4333 = 111333.(43)111 = 111333.64111
Vì 111333.111111.3444 > 111333.64111
=> 333444 > 444333
=> A > B
a-b= 444
(a-b)-b=123
b=444-123=321
a=444+321=765 mk làm đầu tiên
So sánh
a A= 2^0+2^1+2^3+......+2^2010 và B=2^2011-1
b A= 2009.2011 và B= 2010^2
c A= 333^444 và B=444^333
d A= 3^450 và 5^300
Có 333^444=(333^4)^111 và 444^333=(444^3)^111
Như vậy ta cần so sánh 333^4 và 444^3:
Vì 333^4/444^3=3^4*111^4/(4^3*111^3)=3^4*11... nên 333^4>444^3 do đó
333^444>444^333
Cho A=333444 và B=444333. Hãy so sánh A và B
Ta có : 333444=(3.111)444=3444.111444 444333=(4.111)333=4333.111333
Ta lại có:
3444=(34 )111=81111
4 333=(43 )111=64111
=>3444>4333 ( vì 81111>64111)
Mà : 111444>111333(vì 444>333)
Suy ra :
3444.111444>4333.111333
hay 333444>444333
So sánh :
a) A= 2009.2011 và B= 2010 mũ 2
b) A= 333 mũ 444 và 444 mũ 333
c) A= 3 mũ 450 và B= 5 mũ 300
Giúp mình nhé