Cho hình thang cân ABCD (AB//CD),I,K là trung điểm của AC,BD a) cmr: IK//AB b) IK=(DC-AB)/2
Cho hình thang ABCD có AB//CD và CD>AB. Gọi I,K lần lượt là trung điểm của AD,BC. Gọi M,N lần lượt là giao điểm của IK với BD,AC
a) tính DC khi AB=15cm, IK=20cm
b) chứng minh : MN = DC-AB/2
1 cho hình thang ABCD ( AB // CD ) gọi I ,K lần lượt là trung điểm của BD và AC . CM : DC - AB / 2 = IK
cho hình thang ABCD ( AB // DC ) M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC
a) cmr IK// AB
b) đương thẳng IK cắt AD, BC theo thứ tự ở E,F . cmr EI=IK=KF
Cho hình thang ABCD , AB song song CD.Gọi E,F là trung điểm của AD , BC . È cắt BD , AC tại I và K
a) CMR;I,K là trung điểm của BD,AC
b)Cho AB =8cm ,CD= 12Cm.Tính EI , IK,KF
Cho hình thang ABCD, đáy lớn là CD. Điểm M là trung điểm của CD. AM cắt BD tại I, BM cắt AC tại K.
a) CMR: IK//AB
b) IK cắt AD và BC tại E và F. CMR: EI = IK = KF
Cho hình thang ABCD ( AB // CD ), M là trung điểm của CD. I là giao của AM và BD; K là giao của BM và AC
a) CMR: IK // AB
b) Đường thẳng IK cắt AD, BC tại E, F. CMR: EI = IK = KF
c) Gọi N là giao của AD và BC. CMR: MN đi qua trung điểm của AD
Cho hình thang ABCD ( AB//CD) M là trung điểm của CD AM cắt BD tại I BM cắt AC tại K a) Cm: IK//AB b )IK cắt AD và BC tại lần lượt là E,F cm:EI=IK=KF
a: Xét ΔIAB và ΔIMD có
góc IAB=góc IMD
góc AIB=góc MID
=>ΔIAB đồng dạng với ΔIMD
=>IA/IM=AB/MD=IB/ID
Xét ΔKAB và ΔKCM có
góc KAB=góc KCM
góc AKB=góc CKM
=>ΔKAB đồng dạng với ΔKCM
=>KA/KC=KB/KM=AB/CM
KB/KM=AB/CM
AI/IM=AB/MD
mà CM=MD
nên KB/KM=AI/IM
=>MI/IA=MK/KB
Xét ΔMAB có MI/IA=MK/KB
nên IK//AB
b: Xét ΔAMC có IK//MC
nên IK/MC=AI/AM
Xét ΔADM có EI//DM
nên EI/DM=AI/AM
Xét ΔBMC có KF//MC
nên KF/MC=BK/BM
Xét ΔMAB có IK//AB
nên AI/AM=BK/BM
=>IK/MC=FK/MC=EI/DM
mà MC=DM
nên IK=FK=EI
Cho hình thang ABCD (AB // CD), M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC.
a, C/minh: IK // AB
b, Đường thẳng IK cắt AD và BC theo thứ tự ở E và F. CMR: EI = IK= KF
Ta có: AB//CD => AB//DM
=> \(\frac{AI}{IM}=\frac{AB}{DM}\)
AB// MC
=> \(\frac{BK}{KM}=\frac{AB}{MC}\)
Mà DM=MC
=> \(\frac{AI}{IM}=\frac{BK}{KM}\)=> IK//AB
b) IK//AB
=> EI//DM => \(\frac{EI}{DM}=\frac{AI}{AM}\)
IK//MC => \(\frac{AI}{AM}=\frac{IK}{MC}=\frac{BK}{BM}\)
KF//MC => \(\frac{BK}{BM}=\frac{KF}{MC}\)
=> \(\frac{EI}{DM}=\frac{IK}{MC}=\frac{KF}{MC}\)Mà DM =MC
=> EI=IK=KF
Cho hình thang ABCD, AB //CD, M là trung điểm của AB, N là trung điểm của BC. I,K lần lượt là giao điểm của MN với BD và AC với BD. AD=8cm, DC=12cm. Tính MI và IK