Tìm x, biết:
a) -2x - 11 \(⋮\)3x + 2
b) x - 7 \(⋮\)x +6
Tìm x biết :
a, 4.(18 - 5x) - 12.(3x - 7) = 15.(2x - 16) - 6(x + 14)
b, 5.(3x + 5) - 4.(2x - 3) = 5x + 3.(2x + 12) + 1
c, 2.(5x - 8) - 3.(4x - 5) = 4.(3x - 4) + 11
d, (3x + 2)(2x + 9) - (x + 2)(6x + 1) = (x + 1) - (x - 6)
e, (8x - 3)(3x + 2) - (4x + 7)(x + 4)= (2x + 1)(5x - 1) - 33
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
b, 5(3x + 5) - 4(2x - 3) = 5x + 3(2x + 12) + 1
=> 15x + 25 - 8x + 12 = 5x + 6x + 36 + 1
=> (15x - 8x) + (25 + 12) = 11x + 37
=> 7x + 37 = 11x + 37
=> 11x - 7x = 0
=> x = 0
Mọi người giúp tới gấp nhé:
1. Tìm x, biết:
a/ 3(2x - 3) + 2(2 - x) = -3
b/ 2x(x2 - 2) + x2(1 - 2x) - x2 = -12
2. Tìm x, biết:
a/ 3x(2x + 3) - (2x + 5)(3x - 2) = 8
b/ 4x(x - 1) - 3(x2 - 5) - x2 = (x - 3) - (x + 4)
c/ 2(3x - 1)(2x + 5) - 6(2x - 1)(x + 2) = -6
d/ 3(2x - 1)(3x - 1) - (2x - 3)(9x -1) - 3 = -3
e/ (3x - 1)(2x + 7) - (x + 1)(6x - 5) = (x + 2) - (x - 5)
f/ 3xy(x + y) - (x + y)(x2 + y2 + 2xy) + y3 = 27
3. Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào x:
a/ A = 2x(x - 1) - x(2x + 1) - (3 - 3x)
b/ B = 2x(x - 3) - (2x - 2)(x - 2)
c/ C = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)
d/ D = (2x + 11)(3x - 5) - (2x + 3)(3x + 7)
f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)
\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)
\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)
\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)
\(-x^3=27\)
\(x=-3\)
Bài 1:
a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(6x-9+4-2x=-3\)
\(4x=-2\)
\(x=-\frac{1}{2}\)
b/ \(2x\left(x^2-2\right)+x^2\left(1-2x\right)-x^2=-12\)
\(2x^3-4x+x^2-2x^3-x^2=-12\)
\(-4x=-12\)
\(x=\frac{1}{3}\)
Bài 2:
a/ \(3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\)
\(6x^2+9x-6x^2-15x+4x+10=8\)
\(-2x=8\)
\(x=-4\)
b/ \(4x\left(x-1\right)-3\left(x^2-5\right)-x^2=\left(x-3\right)-\left(x+4\right)\)
\(4x^2-4x-3x^2+15-x^2=-7\)
\(-4x=-22\)
\(x=\frac{11}{2}\)
c/ \(2\left(3x-1\right)\left(2x+5\right)-6\left(2x-1\right)\left(x+2\right)=-6\)
\(6x-2\left(2x+5\right)-12x+6\left(x+2\right)=-6\)
\(6x-4x-10-12x+6x+12=-6\)
\(-4x=-8\)
\(x=2\)
Tìm x, biết
a,(2x-4,5)x1 4/7=-11/14
b,|x/7|+6\24
c,60%x+2/3x+1/3.6 1/3
d,|2x-1/3|+5/6=1
Bài 1 :tìm x , biết :
(x-7)x+1 - (x-7)x+11 =0
Bài 2 :tìm x , biết :
a,|2x-3| > 5 c,|3x-1| ≤ 7 d,|3x-5| + |2x+3| = 7
Bài 3 :
a,tính tổng S = 1 + 52 + 54 + ....... + 5200.
b,so sánh 230 + 330 + 430 và 3.2410
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
Bài 1: Tìm x, biết:
a) 4.(x+1)^2+(2x-1)^2-8(x-1)(x+1)=11
b) (x-2)^3-x(x+2)(x-2)+6x(x-3)=0
c) (x-1)(x^2+x+1)-x(x-3)(x+3)=6
Bài 2: Tìm GTNN của:
a) A= x^2-2x+10
b) B= x^2-5x-7
c) C= 3x^2+3x-5
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
\(C=3x^2+3x-5\)
\(3C=9x^2+9x-15\)
\(3C=\left(9x^2+9x+\frac{9}{4}\right)-\frac{69}{4}\)
\(3C=\left(3x+\frac{3}{2}\right)^2-\frac{69}{4}\)
Mà \(\left(3x+\frac{3}{2}\right)^2\ge0\)
\(\Rightarrow3C\ge-\frac{69}{4}\)
\(\Leftrightarrow C\ge-\frac{23}{4}\)
Dấu "=" xảy ra khi :
\(3x+\frac{3}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy ...
bài 1 :tìm x , biết :
(x-7)^ x+1(x-7)^x+11=0
bài 2 :tìm x , biết :
a,|2x-3| > 5 c,|3x-1| ≤ 7 d,|3x-5| + |2x+3| = 7
bài 3 :
a,tính tổng S = 1 + 5^2 + 5^4 + ....... + 5^200.
b,so sánh 2^30 + 3^30 + 4^30 và 3.24^10
chứng minh giá trị k phụ thuộc vào biến
A=(3-2x)x3x-8+(2x+5)(3x-2)-20x
B=(3-5x)(2x+11)-(2x+3)(3x+7)
tìm x
2x(x-1)-x^2+6=0
(x+3)(x^2-3x+9)-x(x-2)(x+2)=15
Sửa đề bài 1 : k => x P/s : đề sai r :))
\(A=\left(3-2x\right)3x^2-8+\left(2x+5\right)\left(3x-2\right)-20x\)
\(=9x^2-6x^3-8+6x^2-4x+15x-10-20x=15x^2-6x^3-18-9x\)
Vậy biểu thức phụ thuộc biến x
\(B=\left(3-5x\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x+33-10x^2-55x-6x^2-14x-9x-21=-72x+12-16x^2\)
Vậy biểu thức phụ thuộc biến x
Bài 2 :
a, \(2x\left(x-1\right)-x^2+6=0\Leftrightarrow2x^2-2x-x^2+6=0\)
\(\Leftrightarrow x^2-2x+6=0\)( vô nghiệm )
b, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^2-9-x\left(x^2-4\right)=15\Leftrightarrow x^2-9-x^3+12=15\)
\(\Leftrightarrow-x^3+x^2-12=0\Leftrightarrow x=2\)
Bài 1 : chứng minh rằng các biểu thức sau đây không phụ thuộc vào x a,A=(3x+7)(2x+3)-(2x+3)-(3x-5)(2x+11) b,B=(x^2-2)(x^2+x-1)-x(x^3+x^2-3x-2) Bài 2:Tìm x biết: a,6x(5x+3)+3x(1-10x)=7 b,(3x-3)(5-21x)+(7x+4)(9x-5)=44 c,(x+1)(x+2)(x+5)-x^2(x+8)=27 d,(2x-1)(3-x)+(x-2)(x+3)=(1-x)(x+2) Bài 3 Tính a,(2x+3)^3 b,(x-3y)^3 c.(x+4)(x^2-4x+16) d,(1/3x+2y)(1/9x^2-2/3xy+4y) e,(x-3y)(x2+3xy+9y^2)
\(1,A=\left(3x+7\right)\left(2x+3\right)-\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\\ =6x^2+23x+21-2x-3-6x^2-23x+55\\ =73-2x\left(đề.sai\right)\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ 2,\\ a,\Leftrightarrow30x^2+18x+3x-30x^2=7\\ \Leftrightarrow21x=7\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\\ \Leftrightarrow79x=79\Leftrightarrow x=1\\ c,\Leftrightarrow\left(x+5\right)\left(x^2+3x+2\right)-x^3-8x^2=27\\ \Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\\ \Leftrightarrow17x=17\Leftrightarrow x=1\)
\(d,\Leftrightarrow7x-2x^2-3+x^2+x-6=-x^2-x+2\\ \Leftrightarrow9x=11\Leftrightarrow x=\dfrac{11}{9}\)
Tìm x, biết
a) 13-[7-(x+8)]=11
b) 14x-3(5x+2)=11
c) 3(2-x)+5(x-6)=-98
d) 3|2x-1|-17=4
e) |5-|3x+1| |=17
a) 13-[7-(x+8)]=11
[7-(x+8)]=13-11
[7-(x+8)]=2
(x+8)=7-2
(x+8)=5
x=5-8
x=-3
Tìm x biết:
a,2x(x+1)-3-2x=5
b,2x(3x+1)+(4-2x)=7\
c,(x-3)^3-(x-3)(x^2+3x+9)+6(x-1)^2=6
a)\(2x\left(x+1\right)-3-2x=5\)
\(\Leftrightarrow2x^2+2x-3-2x=5\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4=\left(-2\right)^2=2^2\)
\(\Rightarrow x=2;-2\)
b)\(2x\left(3x+1\right)+\left(4-2x\right)=7\)
\(\Leftrightarrow6x^2+2x+4-2x=7\)
\(\Leftrightarrow6x^2+4=7\)
\(\Leftrightarrow6x^2=3\)
\(\Leftrightarrow x^2=\frac{1}{2}=-\sqrt{\frac{1}{2}}=\sqrt{\frac{1}{2}}\)
c)\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x-1\right)^2=6\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6\left(x^2-2x+1\right)=6\)
\(\Leftrightarrow-3x^2+27x+6x^2-12x+6=6\)
\(\Leftrightarrow-3x^2+27x+6x^2-12x+6=6\)
\(\Leftrightarrow3x^2+15x=0\)
\(\Leftrightarrow3x\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x+5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)