C= \(10^n+18^n-1\) chia hết cho 27
chứng minh với n thuộc N* để 10 mũ n+18 nhân n-1 chia hết cho 27
Chứng minh :
C= \(10^n+18^n-1\) chia hết cho 27
ko có điều kiện n đâu o0o I am a studious person o0o
Chứng minh
b.9^2n +14 chia hết cho 5 (n thuộc N)
a.2^2002 -4 chia hết cho 31
c.(6^2n+1)+(5^n+2) chia hết 31
d.1979^1979 - 1981^1981 +1982 chia hết 1980
e.9.10^n +18 chia hết 27
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
CM bằng phương pháp quy nạp :
a) 10n + 72n - 1 chia hết cho 81 với mọi n thuộc N
b) 10n + 18n - 1 chia hết cho 27 với mọi n thuộc N
c) 4.3n2n+2 + 32n - 36 chia hết cho 64 với mọi n
a ) 10n + 72n - 1 chia hết cho 81
+ ) n = 0 => 100 + 72 . 0 - 1 = 0
+ ) Giả sử đúng đến n = k tức là :
( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1
Tức là : 10k + 1 + 72 x k + 71
=> 10 . 10k + 72k + 71
=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)- \(\frac{648k+27}{chiahetcho81}\)
=> đpcm
Câu b và c làm tương tự
CM bằng phương pháp quy nạp :
a) 10n + 72n - 1 chia hết cho 81 với mọi n thuộc N
b) 10n + 18n - 1 chia hết cho 27 với mọi n thuộc N
c) 4.3n2n+2 + 32n - 36 chia hết cho 64 với mọi n
Đặt B= 10n+72n-1
B = 10ⁿ + 72n - 1
= 10ⁿ - 1 + 72n
Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)
= 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n
=> A : 9 = 11..1 + 8n
thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9
= 11...1 -n + 9n
=> A : 9 = chia hết cho 9
=> A chia hết cho 81
CM bằng phương pháp quy nạp :
a) 10n + 72n - 1 chia hết cho 81 với mọi n thuộc N
b) 10n + 18n - 1 chia hết cho 27 với mọi n thuộc N
c) 4.3n2n+2 + 32n - 36 chia hết cho 64 với mọi n
a) Đặt cái cần chứng minh là (*)
+) Với n = 0 thì (*) chia hết cho 81 => (*) đúng
+) Giả sử (*) luôn đúng với mọi n = k (k \(\ge\) 0) => 10k + 72k - 1 chia hết cho 81 thì ta cần chứng minh (*) cũng luôn đúng với k + 1 tức 10k + 1 + 72(k + 1) - 1 chia hết cho 81
Thật vậy:
10k + 1 + 72(k + 1) - 1
= 10k.10 + 72k + 72 - 1
= 10k + 72k + 9.10k + 72 - 1
= (10k + 72k - 1) + 9.10k + 72
đến đây tui ... chịu :))
Tiếp nè: Ta có: 10k = 9n + 1 => 9.(9n + 1) + 72 = 81n + 9 + 72 = 81n + 81 chia hết cho 81 mà 10k + 72k - 1 chia hết cho 81 theo giả thiết quy nạp => (10k + 72k - 1) + 9.10k + 72 chia hết cho 81
=> Phương pháp quy nạp đươch chứng minh
Vậy 10n + 72n - 1 chia hết cho 81
1) tìm các c/s x,y để
a) x269y chia hết cho 72
2) CMR
a) 10^2002 chia hết cho 2 và 3
b) 10^2017 + 1 chia hết cho 9
c) ( 10^18+18n-1) chia hết cho 9,3 và 27
3.a) Cho a+b+c = 2018. Hỏi 3a.b.c có chia hết cho 6 ko
b) Cho biết 1978a+2012b chia hết cho 11 và 78n+10b chia hết cho 11. hỏi a+b có chia hết cho 11 ko
1) tìm các c/s x,y để
a) x269y chia hết cho 72
2) CMR
a) 10^2002 chia hết cho 2 và 3
b) 10^2017 + 1 chia hết cho 9
c) ( 10^18+18n-1) chia hết cho 9,3 và 27
3.a) Cho a+b+c = 2018. Hỏi 3a.b.c có chia hết cho 6 ko
b) Cho biết 1978a+2012b chia hết cho 11 và 78n+10b chia hết cho 11. hỏi a+b có chia hết cho 11 ko
1
ta có 72=9,8 và UCLN(8,9)=1
SUY RA x269y chia hết 8 suy ra 69y cia hết cho 8 nên y = 6
nếu y=6 ta có x2696 chia hết cho 9 suy ra x+23 chia hết cho 9 mà 0<x<9 nên x=4
vậy x=4 và y=6
2
a, do 10 là số chăn nên nâng mũ mấy lên cũng là số chẵn suy 10 ^2002 chia hết co 2
ta có 2^2002 =100...00 suy 1 ko chia hết cho 3 nên 10^2002 ko chia hết cho 3
b, ta có 10^2017 +1=100..00 +1 suy ra 2 ko chia hết cho 9
mấy bài còn lại cux dễ tự làm đi nha lê
Tìm n thuộc N biết:
a) 6 chia hết cho n-2
b) 3n-5 chia hết cho n+1
c) 27-5n chia hết cho n
d) n+3 chia hết cho n-1
e)4n+3 chia hết cho 2n-1
a) 6 chia hết cho n-2
n-2
Ta thấy n phải là 1 số chẵn vì vậy để \(6⋮2\)ta có:
n-2 phải là các tập hợi n\(\in\){2,4,,6}
Vậy n là tập hợp các số chẵn n={0,2,4,6,8}
a) Để 6 \(⋮\)n - 2
\(\Leftrightarrow\)n - 2 \(\in\)Ư( 6 ) = { \(\pm\)1 ; \(\pm\)6 }
Ta lập bảng :
n - 2 | 1 | - 1 | 6 | - 6 |
n | 3 | 1 | 8 | - 4 |
Vậy : n \(\in\){ - 4 ; 1 ; 3 ; 8 }
@༺ ༄༂✎₷ωεεէ ༂࿐ ༺ nếu bn lập bảng số nguyên thì e ấy k hiểu có thể làm 1 cách khác vs số k nguyên nhưng nếu em ấy làm số nguyên thì cách bn đúng
Tìm số tự nhiên n sao cho:
a)3n+5 chia hết cho n
b)18-5n chia hết cho n
c)2n+7 chia hết cho n+1
d)2n+1 chia hết cho 6-n
e)3n chia hết cho 5-2n
3n + 5 ⋮ n (n \(\ne\) -5)
3n + 5 ⋮ n
5 ⋮ n
n \(\in\) Ư(5) = {-5; -1; 1; 5}
Vì n \(\in\) N nên n \(\in\) {1; 5}
b, 18 - 5n ⋮ n (n \(\ne\) 0)
18 ⋮ n
n \(\in\) Ư(18) = { -18; -9; -6; -3; -2; -1; 1; 2; 3; 6; 9; 18}
Vì n \(\in\) {1; 2; 3; 6; 9; 18}
c, 2n + 7 \(⋮\) n + 1 (n \(\ne\) -1)
2n + 2 + 5 ⋮ n + 1
2.(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) { -6; -2; 0; 4}
vì n \(\in\) N nên n \(\in\) {1; 5}