Tam giác ABC cân tại A cmr : sin A/2 = BC / 2AB
Kẻ dg cao AH
Tam giác ABC cân => AH vừa là p/g vừa là đg t tuyến
TAm giác AHB vuông tại H
sin BAH = BH / AB = 2BH / 2AB = BC /AB = sin A/2
tam giác ABC vuông tại A. Trên tia AB lấy K sao cho AK=2AB. Từ B và K vẽ các tia Bx//CK, Ky//BC. Gọi P là giao điểm của Bx và Ck. CMR: cos^2 KBC + cos^2 KAP > 2016/2017
Ta thấy ngay góc KBC không là góc nhọn. Ở lớp 9, các em mới chỉ được học tỉ số lượng giác của góc nhọn thôi.
Bài 1: Cho tam giác ABC cân tại A. Lấy D, E thuộc BC sao cho BD = CF. CMR: tam giác ABC cân tại A.
Bài 2: Tam giác ABC cân tại A. Lấy M thuộc AB, N thuộc AC sao cho AM = AN.
a) CMR: MN//BC.
b) Cho CM cắt BN tại I. CMR: IB = IC.
Bài 3: Tam giác ABC cân tại A. Lấy M thuộc BC. Vẽ MK//AB (K thuộc AC). CMR: MK = KC.
Cho tam giác ABC cân tại A có AB = AC = 13 cm ; BC = 10 cm.
Tính cos B .
Kẻ đg cao AH thì AH cũng là trung tuyến
Do đó \(BH=\dfrac{1}{2}BC=5\left(cm\right)\)
\(\Rightarrow\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{5}{13}\)
-Cho tam giác ABC vuông tại A , có BC=2AB . Gọi H là trung điểm của BC , đường thẳng vuông góc với BC tại H cắt AC tại M.
a) Biết ABC = 60 độ , tính góc C ?
b) Chứng minh tam giác MAB = tam giác MHB.
c) Chứng minh tam giác MBC cân
d) Chứng minh BM là đường trung trực của AH
giúp với ạ cần hình gấp😭
Cho tam giác ABC thỏa mãn BC=2AB và \(\widehat{B}=2\widehat{C}\)
CMR tam giác ABC vuông tại A
Cho tam giác ABC vuông tại A, BC=2AB. D là trung điểm cạnh AC. Đường thẳng vuông góc với AC tại D cắt BC tại E. CM:
a) Tam giác AEC cân
b) Tam giác ABE đều
a, Xét tam giác AED và tam giác CED có :
cạnh ED chung
góc ADE = góc CDE = 90độ
AD = CD ( vì D là trung điểm cạnh AC )
Do đó : tam giác AED = tam giác CED ( c.g.c )
=> AE = CE ( cạnh tương ứng )
Vậy tam giác AEC cân tại E
b, Xét tam giác ABC có góc A = 90độ nên :
góc B + góc C = 90độ
mà góc C = góc EAC ( vì tam giác AEC cân theo câu a )
=> góc B + góc EAC = 90độ
Ta có : góc A = góc BAE + góc EAC = 90độ
=> góc B = góc BAE ( vì cùng phụ với góc EAC )
=> tam giác ABE cân tại E
=> AE = BE ( * )
mà AE = CE ( theo câu a )
=> BE = CE và điểm E nằm trên cạnh BC
=> E là trung điểm của BC
=> BE = CE = \(\frac{BC}{2}\) (1)
Theo bài cho : 2AB = BC
=> AB = \(\frac{BC}{2}\) (2)
Từ (1) và (2) suy ra : AB = BE và BE = AE ( theo ( * ) )
=> AB = BE = AE
Vậy tam giác ABE đều .
Học tốt
Gọi M là trung điểm của BC
a) Xét 2 tam giác vuông : \(\Delta\)AED và \(\Delta\)CED có :
\(\hept{\begin{cases}AD=CD\left(gt\right)\\\widehat{EAD}=\widehat{EDC}\left(=90^{\text{o}}\right)\\ED\text{ chung}\end{cases}}\Rightarrow\Delta AED=\Delta CED\left(c.g.c\right)\)
=> AE = EC (cạnh tương ứng)
=> \(\Delta\)AEC cân tại E
b) Vì trong 1 tam giác vuông trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền
=> AM = 1/2 BC
=> AM = BM
Lại có BM = AB
=> AB = AM = BM
=> TAM GIÁC ABE đều
1 Cho tam giác ABC cân tại A đường cao AH. M là một điểm bất kì trên cạnh BC. Kẻ đường thẳng qua M và song song với AH cắt AB và AC lần lượt tại N và Q
a, CM tam giác ANQ cân
b, Tính các góc của tam giác ANQ biết góc ABC=70
c,Kẻ AI vuông góc với MQ. CM AI song song với BC và AI=MH
2 Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M trên tia đối của tia CA lấy N sao cho AM+AN=2AB. CMR:
a, BM=CN
b,BC cắt MN tại trung điểm I của MN
CHO TAM GIÁC ABC VUÔNG TẠI A .VỀ PHÍA NGOÀI CỦA TAM GIÁC ABC VẼ TAM GIÁC ABD VUÔNG CÂN TẠI B,TAM GIÁC ACE VUÔNG CÂN TẠI C
A)CMR A,D,E THẲNG HÀNG
B)GỌI M LÀ TRUNG ĐIỂM CỦA BC ,N LÀ TRUNG ĐIỂM CỦA DE .CMR TAM GIÁC AMN CÂN