Tìm giá trị lớn nhất của A= \(\frac{x^{2+150}}{x^2+1}\)
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.
Cho biểu thức \(A=\frac{2014-x}{2015-x}\)
a) Tính giá trị của biểu thức tại \(x=\frac{1}{2}\)và tại \(x=\frac{-1}{2}\)
b) Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó của A
Lời giải:
a. Tại $x=\frac{1}{2}=0,5$ thì $A=\frac{2014-0,5}{2015-0,5}=\frac{4027}{4029}$
Tại $x=\frac{-1}{2}=-0,5$ thì $A=\frac{2014+0,5}{2015+0,5}=\frac{4029}{4031}$
b. $A=\frac{2015-x-1}{2015-x}=1-\frac{1}{2015-x}=1+\frac{1}{x-2015}$
Để $A$ max thì $\frac{1}{x-2015}$ max
$\Rightarrow x-2015 là số nguyên dương nhỏ nhất
$\Rightarrow x-2015=1$
$\Rightarrow x=2016$
cho x,y>0 thỏa mã xy=1
tìm giá trị lớn nhất của \(A=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
tìm giá trị lớn nhất của \(B=\frac{-8}{3x^2+1}\)
\(A=\frac{x}{x^4+\frac{1}{x^2}}+\frac{\frac{1}{x}}{x^2+\frac{1}{x^4}}=\frac{x}{\frac{x^6+1}{x^2}}+\frac{\frac{1}{x}}{\frac{x^6+1}{x^4}}=\frac{x^3}{x^6+1}+\frac{x^3}{x^6+1}=\frac{2x^3}{x^6+1}\)
Áp dụng bất đẳng thức Côsi: \(x^6+1\ge2\sqrt{x^6.1}=2x^3\)
\(\Rightarrow A\le\frac{2x^3}{2x^3}=1\)
Dấu "=" xảy ra khi \(x^3=1\Leftrightarrow x=1\)
Vậy GTNN của A là 1.
\(B=\frac{-8}{3x^2+1}\)
Cách 1:
\(3x^2+1>0\)không có GTLN \(\Rightarrow\frac{8}{3x^2+1}\)không có GTNN \(\Rightarrow-\frac{8}{3x^2+1}\)không có GTLN.
Cách 2:
\(3Bx^2+B=-8\Leftrightarrow3Bx^2+B+8=0\)
+B = 0 thì pt trở thành 0 + 0 + 8 = 0 (vô lí)
+Xét B khác 0. Để pt có nghiệm x thì \(\Delta'=0-4.3B\left(B+8\right)\ge0\Leftrightarrow B\left(B+8\right)\le0\Leftrightarrow-8\le B\le0\)
\(\Rightarrow-8\le B
a) tìm giá trị nhỏ nhất của biển thức A= / x-7 / + 6-x
b) tìm giá trị lớn nhất của biểu thức B=\(x+\frac{1}{2}\)- / \(x-\frac{2}{3}\)/
Tìm giá trị của biến x để
a/  \(P=\frac{1}{x^2+2x+6}\)đạt giá trị lớn nhất
b/ \(Q=\frac{x^2+x+1}{x^2+2x+1}\)đạt giá trị nhỏ nhất
\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)
\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)
a) Tìm giá trị lớn nhất của biểu thức: B= 5-\(\left|\frac{1}{3}x+2\right|\)
b) Tìm giá trị nhỏ nhất của biểu thức:C=\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\)
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10
a) tìm giá trị nhỏ nhất của biểu thức A= |x-7|+ |6-x|
b)tìm giá trị lớn nhất của biểu thức B= | \(x+\frac{1}{2}\)| - |\(x-\frac{2}{3}\)|
1) Tìm giá trị nguyên của biến x để biểu thức
a, A=\(\frac{2}{6-x}\) có giá trị lớn nhất
b,B=\(\frac{8-x}{x-3}\) có giá trị nhỏ nhất
2)Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau
a,\(\left|x-2\right|+\left|x+3\right|\)
b,\(\left(2x^2+3\right)^2-4\)
c, \(4x^2-4x+3\)
1) Tìm giá trị lớn nhất của \(E=\frac{x^2+xy+y^2}{x^2-xy+y^2}\) với x,y>0
2) Tìm giá trị lớn nhất của \(M=\frac{x}{\left(x+1995\right)^2}\) với x>0
Rút gọn: \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\left(\frac{2}{x^2-2x+1}\right)\)
a/ Tìm x để P>0
b/Tìm giá trị của P khi x=\(7-4\sqrt{3}\)
c/ Tìm giá trị lớn nhất của P va2 giá trị của x tương ứng
ĐKXĐ:
\(x-1\ne0\text{ và }x\ge0\)
\(x\ne1\text{ và }x\ge0\)
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\left(\frac{2}{x^2-2x+1}\right)\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right):\left(\frac{2}{\left(x-1\right)^2}\right)\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\left(\frac{2}{\left(\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\right)^2}\right)\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)