tìm 2 số x, y thuộc Z thỏa mãn x/2 - 1/y = 2/3
zúp mik đi sắp thi òi
giải dùm tui nhak! chuẩn bị thi òi!!!!!!!!!!!
Tìm 2 số x, y thuộc Z thỏa mãn x/2 - 1/y = 2/3
\(\frac{x}{2}-\frac{1}{y}=\frac{2}{3}\)
<=>\(\frac{x}{2}-\frac{2}{3}=\frac{1}{y}\)
<=>\(\frac{3x-4}{6}=\frac{1}{y}\)
<=>\(y\left(3x-4\right)=6\)
Ta có bảng sau:
3x-4 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
y | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
x | -2/3 | 1/3 | 2/3 | 1 | 5/3 | 2 | 7/3 | 10/3 |
Vì x;y là số nguyên nên có 2 cặp số nguyên thỏa mãn là ..........
Mik đang cần gấp. Các bạn giúp mik với ạ.Cảm ơn nh!!!
Bài1: Tìm các số nguyên x,y thỏa mãn: x^4+2x^2=y^3
Bài2: Tìm các số tự nhiên x,y thỏa mãn: 2x.x^2=9y^2+6y+16
Bài3: Cho x,y,z>0 thỏa mãn x^2+y^2+z^2=3. Tìm Max P= x/(3-yz) + y/(3-xz) +z/(3-xy)
tìm x ,y.,z ϵ N, thỏa mãn \(2^{x^2}\)+\(3^{2y+1}\)+\(5^z\)=40 và \(2^x\)+\(3^y\)+\(5^z\)=156
pls giúp mik với mik like cho pls
mik cần gấp giúp mik đi các bạn
1.Tìm x;y thuộc N : x^3 -7=y^2
2.Tìm p;q thuộc P và x thuộc z thỏa mãn: x^5+px+3q=0
3, Tìm x;y thuộc Z thỏa mãn 6x^3-xy(11x+3y)+2y^3=6
cho 3 số x<y<z thỏa mãn: x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ lệ vs 9,12,13.Tìm x,y,z
mn giúp mik nhé! đề thi hsg Nông Cống-Thanh Hóa đó
Bài 1: Tìm x,y thuộc Z thỏa mãn x^2 - 2xy + 5y^2=y+1
Bài 2:Tìm x thuộc Z để số sau là số chính phương
a)x^2 +3x b)x^2 +x+6
Bài 1: Tìm x,y thuộc Z thỏa mãn x^2 - 2xy + 5y^2=y+1
Bài 2:Tìm x thuộc Z để số sau là số chính phương
a)x^2 +3x b)x^2 +x+6
2.
a.
\(x^2+3x=k^2\)
\(\Leftrightarrow4x^2+12x=4k^2\)
\(\Leftrightarrow4x^2+12x+9=4k^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)
2x+3-2k | -9 | -3 | -1 | 1 | 3 | 9 |
2x+3+2k | -1 | -3 | -9 | 9 | 3 | 1 |
x | -4 | -3 | -4 | 1 | 0 | 1 |
nhận | nhận | nhận | nhận | nhận | nhận |
Vậy \(x=\left\{-4;-3;0;1\right\}\)
b. Tương tự
\(x^2+x+6=k^2\)
\(\Leftrightarrow4x^2+4x+24=4k^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)
Em tự lập bảng tương tự câu trên
1.
\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)
\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)
\(\Leftrightarrow-64y^2+16y+16\ge0\)
\(\Leftrightarrow\left(8y-1\right)^2\le17\)
\(\Rightarrow\left(8y-1\right)^2\le16\)
\(\Rightarrow-4\le8y-1\le4\)
\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)
\(\Rightarrow y=0\)
Thế vào pt ban đầu:
\(\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)
Cho 3 số thực dương thỏa mãn x , y ,z thỏa mãn điều kiện x + y + z = xyz . Tìm Min của biểu thức
\(Q =\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)
- Đề thi vào 10 Thanh Hóa 2020 - 2021 -
Từ giả thiết ta có :
\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)
\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)
Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Dấu " = " xảy ra khi và chỉ khi a = b = c
Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)
Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)
Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)
1.cho x,y,z thuộc R thỏa mãn x+y+z+xy+xz+yz=6. Tìm GTNN của : x^2+y^2+z^2
2. cho x,y>0 thỏa mãn x+1/y<=1. tìm GTNN: A=x/y+y/x