Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn ngọc khánh vân
Xem chi tiết
Đinh Hoàng Thuận
Xem chi tiết
Thắng Nguyễn
29 tháng 12 2016 lúc 12:58

\(\frac{2a+5}{a+2}+\frac{4a+6}{a+2}-\frac{3a}{a+2}=\frac{2a+5+4a+6-3a}{a+2}\)

\(=\frac{3a+11}{a+2}=\frac{3\left(a+2\right)+5}{a+2}=\frac{3\left(a+2\right)}{a+2}+\frac{5}{a+2}=3+\frac{5}{a+2}\in Z\)

\(\Rightarrow5⋮a+2\)

\(\Rightarrow a+2\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)

\(\Rightarrow a=3\) (a nguyên dương) 

ngonhuminh
29 tháng 12 2016 lúc 12:48

lộn xộn quá

Đinh Hoàng Thuận
29 tháng 12 2016 lúc 13:00

Tìm x biết (5/6)^2*x+17=3125/7776

giải giúp mình lun nah 

Đoàn Phương Linh
Xem chi tiết
nhocanime
Xem chi tiết
alibaba nguyễn
7 tháng 4 2017 lúc 14:34

Ta có:

\(\frac{1}{2a}+\frac{1}{3a}+\frac{1}{4a}=\frac{1}{b^2-2b}\)

\(\Leftrightarrow13b^2-26b-12a=0\)

\(\Leftrightarrow12\left(a+b\right)=13b^2-14b\)

\(\Leftrightarrow a+b=\frac{13b^2-14b}{12}\)

\(\Leftrightarrow a+b=b^2-b+\frac{b^2-2b}{12}=b^2-b+\frac{b\left(b-2\right)}{12}\)

Dễ thấy b phải là số chẵn (1)

để \(\frac{b\left(b-2\right)}{2.2.3}\) nguyên thì

\(\Rightarrow\orbr{\begin{cases}b⋮3\\b-2⋮3\end{cases}}\)(2)

Từ (1) và (2) \(\Rightarrow\orbr{\begin{cases}b=6k\\b-2=6k\end{cases}\left(k\ge1\right)}\)

Với \(b=6k\) thế vào ta được

\(a+b=\frac{13\left(6k\right)^2-14.\left(6k\right)}{12}=36k^2-7k\)

Dễ thấy hàm số \(f\left(k\right)=39k^2-7k\) là hàm đồng biết với \(k\ge1\)

Từ đây ta có a + b nhỏ nhất khi k nhơ nhất hay \(k=1\)

\(\Rightarrow\hept{\begin{cases}b=6\\a=26\\a+b=32\end{cases}}\)

Tương tự cho trường hợp \(b-2=6k\) sẽ tìm được GTNN của a + b

PS: Vì m thích làm sự đơn điệu của hàm số thôi. Nếu các b có cách khác thì cứ làm cho gọn nhé :)

Mạnh Lê
7 tháng 4 2017 lúc 22:54

\(\Rightarrow a=26\)\(b=6\)Còn cách làm thì giống như Bạn alibaba nguyễn đó bạn 

~ Chúc bạn học giỏi ~~~

KIM DUY THÀNH
Xem chi tiết
Nguyen Ngoc Van
Xem chi tiết
Anh Quỳnh
Xem chi tiết
lê văn ải
Xem chi tiết
Tống Khánh Ly
Xem chi tiết