tính A= \(\frac{2^4+4}{4^4+4}.\frac{6^4+4}{8^4+4}...\frac{18^4+4}{20^4+4}\)
Tính giá trị của \(\frac{2^4+4}{4^4+4}\cdot\frac{6^4+4}{8^4+4}\cdot...\cdot\frac{18^4+4}{20^4+4}\)
\(\frac{2^4+4}{4^4+4}\frac{6^4+4}{8^4+4}...\frac{18^4+4}{20^4+4}\)
tính giá trị biểu thức trên :3
\(\frac{4}{2\times4}+\frac{4}{4\times6}+\frac{4}{6\times8}+\frac{4}{8\times10}+...+\frac{4}{16\times18}+\frac{4}{18\times20}\)
Gọi tổng là A ta có:
\(A.2=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{18.20}\)
\(A.2=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{18}-\frac{1}{20}\)
\(A.2=\frac{1}{2}-\frac{1}{20}\)
\(A=\frac{9}{20}:2=\frac{9}{40}\)
tính nhanh tổng \(A=\frac{4}{2}+\frac{4}{6}+\frac{4}{12}+\frac{4}{20}+\frac{4}{30}+\frac{4}{42}\)
\(A=\frac{4}{2}+\frac{4}{6}+\frac{4}{12}+\frac{4}{20}+\frac{4}{30}+\frac{4}{42}\)
\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+\frac{4}{4.5}+\frac{4}{5.6}+\frac{4}{6.7}\)
\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=4\left(1-\frac{1}{7}\right)\)
\(A=4.\frac{6}{7}\)
\(A=\frac{24}{7}\)
\(A=\frac{4}{2}+\frac{4}{6}+\frac{4}{12}+\frac{4}{20}+\frac{4}{30}+\frac{4}{42}=4\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=4\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=4\left(1-\frac{1}{7}\right)=\frac{6}{7}.4=\frac{24}{7}\)
A = \(\frac{4}{2}+\frac{4}{6}+\frac{4}{12}+\frac{4}{20}+\frac{4}{30}+\frac{4}{42}\)
A = \(\frac{4}{2}+\frac{4}{2.3}+\frac{4}{3.4}+\frac{4}{4.5}+\frac{4}{5.6}+\frac{4}{6.7}\)
A x 4 = \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
A x 4 = \(1-\frac{1}{7}\)
A x 4 = \(\frac{6}{7}\)
A = \(\frac{6}{7}:4\)
A = \(\frac{3}{14}\)
BÀI ÔN SỐ HỌC
1. Thực hiện mỗi phép tính sau bằng 2 cách:
a)\(3\frac{4}{9}+5\frac{1}{6}\)
Ví dụ :
Cách 1: \(3\frac{4}{9}+5\frac{1}{6}=\frac{31}{9}+\frac{31}{6}=\frac{62}{18}+\frac{93}{18}=\frac{155}{18}=8\frac{11}{18}\)
Cách 2:\(3\frac{4}{9}+5\frac{1}{6}=3\frac{8}{18}+5\frac{3}{18}=8\frac{11}{18}\)
b)\(8\frac{1}{14}-6\frac{3}{7}\)
c)\(7-3\frac{6}{7}\)
2. Áp dụng tính chất phép tính & qui tắc dấu ngoặc để tính giá trị các biểu thức sau:
a)A =\(11\frac{3}{13}-\left(3\frac{4}{7}+6\frac{3}{13}\right)\)
b)B =\(\left(7\frac{4}{9}+3\frac{8}{13}\right)-5\frac{4}{3}\)
c)C =\(\frac{-2}{7}.\frac{5}{11}+\frac{-2}{7}.\frac{6}{11}+5\frac{4}{7}\)
d)D =\(0,7.1\frac{3}{5}.30.0,375.\frac{4}{7}\)
3.Tìm các số nghịch đảo của các số sau : \(\frac{4}{7};6\frac{3}{8};\frac{-3}{17};0.37\)
4.Tìm x, biết :
0,5-\(\frac{2}{3}x=\frac{5}{12}\)
Tính
\(S=\frac{\left(1^4+\frac{1}{4}\right).\left(3^4+\frac{1}{4}\right).\left(5^4+\frac{1}{4}\right).....\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right).\left(6^4+\frac{1}{4}\right)....\left(20^4+\frac{1}{4}\right)}\)
Ta có: \(a^4+4=a^4+4a^2+4-4a^2=\left(a^2+2\right)^2-\left(2a\right)^2=\left(a^2+2a+2\right)\left(a^2-2a+2\right)\) (*)
Nhân 24 vào mỗi tổng ở tử thức và mẫu thức ta có : \(S=\frac{\left(2^4+4\right)\left(6^4+4\right)...\left(38^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)...\left(40^4+4\right)}\)
Áp dụng (*) vào S ta được:
\(S=\frac{\left(2^2+2.2+2\right)\left(2^2-2.2+2\right)\left(6^2+2.6+2\right)\left(6^2-2.6+2\right)...\left(38^2+2.38+2\right)\left(38^2-2.38+2\right)}{\left(4^2+2.4+2\right)\left(4^2-2.4+2\right)\left(8^2+2.8+2\right)\left(8^2-2.8+2\right)...\left(40^2+2.40+2\right)\left(40^2-2.40+2\right)}\)
\(=\frac{2.10.26.50...1370.1522}{10.26.50.82...1522.1682}=\frac{2}{1682}=\frac{1}{841}\)
Vậy \(S=\frac{1}{841}\)
Tính:
\(S=\frac{\left(1^4+\frac{1}{4}\right).\left(3^4+\frac{1}{4}\right).\left(5^4+\frac{1}{4}\right).....\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right).\left(6^4+\frac{1}{4}\right)....\left(20^4+\frac{1}{4}\right)}\)
bạn tham khảo : https://olm.vn/hoi-dap/detail/107489626252.html
Tính : \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)\left(7^4+\frac{1}{4}\right)\left(9^4+\frac{1}{4}\right)\left(11^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)\left(8^4+\frac{1}{4}\right)\left(10^4+\frac{1}{4}\right)\left(12^4+\frac{1}{4}\right)}\)
Tính A=\(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}\)