Tính nhanh:
\(A=\left(2^2+4^2+6^2+...+100^2\right)-\left(1^2+3^2+5^2+...+99^2\right)\)
Tính nhanh các giá trị sau :
\(N=\left(2^2+4^2+6^2+.....+100^2\right)\left(1^2+3^2+5^2+.....+99^2\right)\)
\(N=\left(2^2+4^2+6^2+...+100^2\right)\left(1^2+3^2+5^2+...+99^2\right)\)
\(N=\left(\frac{100\left(100+1\right)\left(2.100+1\right)}{6}\right)\left(\frac{99\left(2.99-1\right)\left(2.99+1\right)}{3}\right)\)
\(N=338350.1293699=.....\)
\(N=\left(2^2+4^2+....+100^2\right)-\left(1^2+3^2+...+99^2\right)\)
\(=2^2+4^2+6^2+.....+100^2-1^2-3^2-.....-99^2\)
\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+......+\left(100-99\right)\left(100+99\right)\)
\(=3+7+....+199\)
\(=3+7+....+197+2\)
\(=4765+2=4767\)
Tính nhanh :
A = \(\left(\frac{2}{3}+\frac{3}{4}+....+\frac{99}{100}\right)\cdot\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+....+\frac{98}{99}\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\cdot\left(\frac{2}{3}+\frac{3}{4}+...+\frac{98}{99}\right)\)
A=(2/3+3/4+...+99/100)x(1/2+2/3+3/4+...+98/99)-(1/2+2/3+...+99/100)x(2/3+3/4+4/5+...98/99)
ta cho nó dài hơn như sau
A=(2/3+3/4+4/5+5/6+....+98/99+99/100)
ta thấy các mẫu số và tử số giống nhau nên chệt tiêu các số
2:3:4:5...99 vậy ta còn các số 2/100
ta làm vậy với(1/2+2/3+3/4+.....+98/99) thi con 1/99
làm vậy với câu (1/2+2/3+...+99/100) thì ra la 1/100
vậy với (2/3+3/4+...+98/99) ra 2/99
xùy ra ta có 2/100.1/99-1/100.2/99=1/50x1/99-1/100x2/99=tự tinh nhe mình ngủ đây
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
Tính nhanh
a,\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
b,\(B=\left(20^2+18^2+...+2^2\right)-\left(19^2+17^2+....+3^2+1^2\right)\)
c,\(C=\frac{780^2-220^2}{125^2+150.125+75^2}\)
d,\(D=2.\left(a+5\right).\left(a+4\right)-\left(a+5\right)^2-\left(a^2-9a-17\right)\)với a=99
a/ A = 1002 - 992 + 982 -...+22 - 12
= (1002 - 992) + (982 - 972) +...+ (22 - 12)
= 199 + 195 + 191 + ... + 1
= (\(\frac{199-1}{4}+1\))(\(\frac{199+1}{2}\)) = 5050
b/ Y chang câu a luôn nha
c/ \(C=\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}\)
\(=\frac{560.1000}{200^2}=14\)
d/ 2(a + 4)(a + 5) - (a + 5)2 - (a2 - 9a - 17)
= 17a + 32 = 17(a + 1) + 15 = 1700 + 15 = 1715
Rút gọn A=\(\frac{\left(1+2+3+......+99+100\right).\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right).\left(63.1,2-21.3,6+1\right)}{1-2+3-4+5-6+.........+99-100}\)=...
bài 1: tính nhanh
a, (100-13).(100-23).(100-33)..........(100-503)
b, \(\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+...........+\frac{5^2}{56.61}\)
c, \(2^{100}-2^{99}+2^{98}-2^{97}+.......+2^2-2^1\)
d, \(2015^{\left(1.4.9.6\right).\left(1.4.9.7\right).\left(1.4.9.8\right)....\left(1.9.9.9\right)}\)
bài 2: Tính
a, \(A=\left(-1\right).\left(-1\right)^2.\left(-1\right)^3.\left(-1\right)^4.\left(-1\right)^5.........\left(-1\right)^{99}\)
b, \(B=512-\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-........-\frac{512}{2^{10}}\)
đang bận làm để thông cảm nha có j kiếm lại chất xám mình giải cho
Rút gọn A=\(\frac{\left(1+2+3+.......+99+100\right).\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right).\left(63.1,2-21.36+1\right)}{1-2+3-4+5-6+....+99-100}\)là .....
tính nhanh
a)100-98+96-94+...+4-2
b)1+2-3-4+5+6-7+-8+9+10-11-12+13+2010
c)(864x11-423x4):(432x(3+6+9+...+27-132))
d)1x2+2x3+3x4+...+99x100
e)\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+\left(1+2+3+4\right)+...+\left(1+2+3+...+99\right)}{1x9+2x98+3x97\: +....+99x1}\)
giúp mk với , mk tick cho 3 tick , nha !!!!
a,100-98+96-94+...+4-2
day tren so so so hang la (100-2):2+1=50
Có tất cả số cặp 5:2=25 cap
100-98+96-94+...+4-2=2+2+..+2=2.25=50
Câu 1: Tính
a) A=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).....\left(\frac{1}{98^2}-1\right).\left(\frac{1}{99^2}-1\right)\)
b) B=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\)
c) C=\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}+6^4}\)