tìm số thực dương x,y,z
x*căn(1-y^2 ) +y*căn(2-z^2)+z*căn(3-x^2)=3
Tìm các số thực dương x,y,z thoả mãn:
x. căn của (1-y2) + y. căn của (2-z2) + z. căn của (3-x2) = 3
Tìm các số thực dương x,y,z thoả mãn:
x. căn của (1-y2) + y. căn của (2-z2) + z. căn của (3-x2) = 3
Cho x,y,z là các số thực dương : xy+yz+xz=1. Tìm min của P = ( căn( x2 +1) + căn(y2 +1) + căn(z2 +1))/(x+y+z)
\(\frac{\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}}{\sqrt{x+y+z}}\)
Đặng Viết Thái tử đúng rồi còn mẫu không có căn
\(x = { \sqrt{x^2+1} + \sqrt{y^2+1} + \sqrt{z^2+1} \over x + y+z}\)
Cho x,y,z là các số thực dương lớn hơn 1. Tìm gía trị nhỏ nhất của biểu thức . P= x/ căn ( y+z-2) + y/ căn ( z+x-2) + z/ căn ( x+y-2)
cho x,y,z là các số thực thỏa mãn -1<=x,y,z <=1 và x+y+z =o. tìm GTNN biểu thức :P=căn bậc 2 1+x+y^2 +căn bậc 2 của 1+y+z^2 + căn bậc 2 của 1+z+x^2
Cho 3 so x,y,z là dương thỏa mãn x+y+z<=1.Chứng minh rằng:
Căn của x^2+1/y^2+ căn của y^2+1/z^2+ căn của z^2+1/x^2 >=82
Ta có:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
cho x,y,z là các số thực dương và x^2+y^2+z^2=x+y+z. chứng minh rằng x+y+z+3>=6 căn 3 xy+yz+xz/3. Mn giải giúp mình với ạ
Tìm x,y,z thỏa mãn: x+y+z+8=2×căn(x+1)+4×căn(y-2)+6×căn(z-3)
A) Căn 16x - 2 căn 20x +3 căn 25x =28 B) căn 4x-12 - căn 25x-75+ căn 16x-48 C) 2 căn x-2 + 4 căn 9-3+ 6 căn x-5 = x+y+z+4 D) căn x-1 + 2 căn y-4 + 3 căn z-9=1/2(x+y+z)