Chứng minh : 10n : 45 luôn dư 10 . Với n \(\in\) N*
Chứng minh rằng 10^n chia cho 45 luôn dư 10 (với n € N^* ).Ta phải chưng minh10^n -10 cgi hết cho 45.
Chứng minh rằng: 10n chia cho 45 luôn dư 10 với n thuộc N*
giả sử 10n chia cho 45 dư 10 => 10n - 10 sẽ chia hết cho 45
vậy 10n - 10 chắc chắn chia hết cho 9 và 5 ( ta cm điều đó )
ta có 10n - 10 = 100000....n số o - 10 = 999999........( n - 1 số 9 ) 0
hay :( n - 1 số 9 ) x 10
xét thấy n - 1 số 9 chia hết ho 9 và 10 chia hết cho 5 => 10nn - 10 chia hết cho 45
nên 10n chia cho 45 sẽ dư 10 ( đpcm )
Chứng minh : 10n chia cho 45 luôn dư 10 . Với n \(\ne\) 0
Chứng minh :
10n : 45 luôn dư 10
+) Nếu n > 1 . Ta xét 10n - 10 = 10(10n - 1 - 1) = 10.(99....9) (n - 1 số 9)
+) Với n = 1 thì 10n = 10 . ta có 10 chia 45 dư 10
Vậy ...
\(10^n : 45(10) \)
=> \(10^n = 1000..000...\)
=> \(1000...000... : 45 = ...(10)\)
=> \(10^n : 45 = ...(10)\)
Chứng minh rằng 10^n :45 luôn luôn dư 10 với mọi n>1 và n thuộc N
Gỉa sử 10n chia hết cho 45 dư 10 => 10n - 10 sẽ chia hết cho 45
Vậy 10n - 10 chắc chắn sẽ chai hết cho 9 và 5
Ta có : 10n - 10 = 10000....n số 0 - 10 = 9999......( n-1 số 9 )
hay : ( n-1 số 9 ) x 10
Xét thấy : n - 1 số 9 chia hết cho 9 và 10 chia hết cho 5 => 10n - 10 chia hết cho 45
nên 10n chia cho 45 luôn dư 10
CMR 10^n chia 45 luôn dư 10 với mọi n thuộc N*
bạn nào làm được mk tick cho
Chứng minh \(10^m\) chia cho 45 luôn dư 10 với mọi m>1
Bằng kiến thức về đồng dư thức , chứng minh rằng \(n^4-10n^2+9⋮48\) với n lẻ
Cho n ϵ \(ℕ\), n > 2. Chứng minh rằng:
a) 10n + 23⋮9 b) 10n + 26⋮18 c) 92n + 1 + 1⋮10
a/ \(10^n+2^3=1000...08\) (n-1 chữ số 0)
Tổng các chữ số của \(10^n+2^3\) là \(1+8=9⋮9\Rightarrow10^n+2^3⋮9\)
b/ \(10^n+26=1000...026\) (n-2 chữ số 0)
\(1000...026⋮2\Rightarrow10^n+26⋮2\)
Tổng các chữ số của \(10^n+26\) là \(1+2+6=9⋮9\Rightarrow10^n+26⋮9\)
Mà 2 và 9 là 2 số nguyên tố cùng nhau
\(\Rightarrow10^n+26⋮2.9=18\)
c/
\(9^{2n+1}=9.9^{2n}\)
\(9^{2n}=\left(9^2\right)^n=81^n\) có chữ số hàng đơn vị là 1
\(\Rightarrow9^{2n+1}=9.9^{2n}\) có chữ số hàng đơn vị là 9
\(\Rightarrow9^{2n+1}+1\) có chữ số hàng đơn vị là 0 \(\Rightarrow9^{2n+1}+1⋮10\)