Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Le Ngoc Ha
Xem chi tiết
lợi trương
Xem chi tiết
Nguyễn Huỳnh Chi Kha
Xem chi tiết
Nguyễn Bảo Trung
6 tháng 7 2017 lúc 11:41

f(x)= x^2017 - 2016.x^2016 - 2016.x^2015 - ... - 2016x + 1

f(x)= x^2017 - (2017 - 1)x^2016 - (2017 - 1)x^2015 - ... - (2017 - 1)x +1

Với x=2017 ta có :

f(x)= x^2017 - (x - 1)x^2016 - (x-1)x^2015 - ... - (x - 1)x +1

f(x)= x^2017 - x^2017 +x^2016 - x^2016 +...+ x^2 - x^2 + x + 1

f(x)= x + 1

Thay x =2017 vào f(x) ta có :

f(2017) = 2017 +1 = 2018

Uchiha Sasuke
Xem chi tiết
Lê Phong Hào
4 tháng 1 2017 lúc 22:28

Theo đề bài ta có

\(f\left(x\right)=x^{2017}-2016.x^{2016}+2016.x^{2015}-...+2016.x-1\)

Với \(f\left(2015\right)\)thì \(x=2015,x+1=2016\)

\(\Rightarrow f\left(x\right)=x^{2017}-\left(x+1\right).x^{2016}+\left(x+1\right).x^{2015}-...+\left(x+1\right).x-1\)

\(\Rightarrow f\left(x\right)=x^{2017}-x^{2017}-x^{2016}+x^{2016}+x^{2015}-...+x^2+x-1\)

\(\Rightarrow f\left(x\right)=x-1\)

\(\Rightarrow f\left(2015\right)=2015-1=2014\)

Vậy f(2015)=2014

Nguyễn Cường Nhật
Xem chi tiết
Lucy Heartfilia
Xem chi tiết
Đặng Bá Vinh
Xem chi tiết
Nguyễn Đức Hoàng
Xem chi tiết
Huỳnh Phạm Quỳnh Như
Xem chi tiết