\(\frac{\frac{41}{10}}{\frac{9}{4}}=\frac{x}{7,3}\)
Tìm x;\(\frac{\frac{41}{10}}{\frac{9}{4}}=\frac{x}{7,3}\)
\(\frac{\frac{41}{10}}{\frac{9}{4}}=\frac{41}{10}\div\frac{9}{4}=\frac{41}{10}\times\frac{4}{9}=\frac{82}{45}\Rightarrow\frac{82}{45}=\frac{x}{7,3}\)
Đến đấy thôi
\(\frac{41}{\frac{10}{\frac{9}{4}}}=\frac{x}{7,3}\)
\(\frac{4,1}{2,25}=\frac{x}{7,3}\)
\(x=4,1\cdot7,3\div2,25\)
\(x=\frac{2993}{225}\)
tìm x: \(\frac{\frac{41}{10}}{\frac{9}{4}}=\frac{x}{7,3}\)
\(\frac{\frac{41}{10}}{\frac{9}{4}}=\frac{x}{7,3}\)
\(\Rightarrow x.\frac{9}{4}=\frac{41}{10}.7,3\)
\(\Rightarrow x.\frac{9}{4}=\frac{2993}{100}\)
\(\Rightarrow x=\frac{2993}{100}:\frac{9}{4}\)
\(\Rightarrow x=\frac{2993}{225}\)
Vậy \(x=\frac{2993}{225}.\)
Chúc bạn học tốt!
\(\frac{\frac{41}{10}}{\frac{9}{4}}=\frac{x}{7,3}\\ \Rightarrow\frac{9}{4}x=\frac{41}{10}\cdot7,3\left(\text{tính chất của tỉ lệ thức}\right)\\ x=\frac{\frac{41}{10}\cdot7,3}{\frac{9}{4}}=\frac{2993}{225}\)
Vậy \(x=\frac{2993}{225}\)
Tính nhanh
1, \(10\frac{5}{4}-4\frac{9}{14}-6\frac{5}{7}+\frac{7}{3}\)
2, \(\frac{29}{32}\left(\frac{41}{36}-\frac{32}{58}\right)-\frac{41}{36}\left(\frac{29}{32}+\frac{18}{41}\right)\)
Tìm x biết :
a) \(\frac{x+11}{10}+\frac{x+21}{20}+\frac{x+31}{30}=\frac{x+41}{40}+\frac{x+101}{50}\)
b) \(\frac{x+2}{42}+\frac{x+4}{22}=\frac{x+5}{23}+\frac{x+3}{43}\)
c) \(\frac{x-10}{20}+\frac{x-20}{10}+\frac{x-30}{5}=\frac{x-14}{4}\)
a ) Ta có : \(\frac{x+11}{10}+\frac{x+21}{20}+\frac{x+31}{30}=\frac{x+41}{40}+\frac{x+101}{5}\)
\(\Leftrightarrow\left(\frac{x+11}{10}-1\right)+\left(\frac{x+21}{10}-1\right)+\left(\frac{x+31}{30}-1\right)=\left(\frac{x+41}{40}-1\right)+\left(\frac{x+101}{50}-2\right)\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{20}+\frac{x+1}{30}=\frac{x+1}{40}+\frac{x+1}{50}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{20}+\frac{x+1}{30}-\frac{x+1}{40}-\frac{x+1}{50}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{20}+\frac{1}{30}-\frac{1}{40}-\frac{1}{50}\right)=0\)
Mà \(\left(\frac{1}{10}+\frac{1}{20}+\frac{1}{30}-\frac{1}{40}-\frac{1}{50}\right)\ne0\)
Nên x + 1 = 0
=> x = -1
b) Sai đề à bạn đề \(\frac{x+2}{42}+\frac{x+4}{22}=\frac{x+5}{23}+\frac{x+3}{43}\) hả đề này mk làm đc
Bài 9: Tìm x biết:
a, \(x+\frac{4}{5\times9}+\frac{4}{9\times13}+\frac{4}{13\times17}+....+\frac{4}{41\times45}=\frac{-37}{45}\)
b, \(x-\frac{20}{11\times13}-\frac{20}{13\times15}-\frac{20}{15\times17}-....-\frac{20}{53\times55}=\frac{3}{11}\)
c, \(\frac{1}{21}+\frac{1}{21}+\frac{1}{36}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)
\(a,\)\(x+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=-\frac{37}{45}\)
\(x+\left(\frac{9-5}{5.9}+\frac{13-9}{9.13}+\frac{17-13}{13.17}+...+\frac{45-41}{41.45}\right)=-\frac{37}{45}\)
\(x+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+....+\frac{1}{41}-\frac{1}{45}\right)-\frac{37}{45}\)
\(x+\left(\frac{1}{5}-\frac{1}{45}\right)=-\frac{37}{45}\)
\(x+\frac{8}{45}=-\frac{37}{45}\)
\(x=-\frac{37}{45}-\frac{8}{45}\)
\(x=-1\)
Tớ đố các cậu tìm được x của các câu trên (với điều kiện x thuộc Z)
a)\(\frac{15}{41}+\frac{-138}{41}< x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
b)\(\frac{x}{5}=\frac{15}{2}-\frac{51}{10}\)
c)\(\frac{2x}{3}-\frac{1}{9}=\frac{59}{36}+\frac{1}{4}\)
d)\(\frac{11}{5}x=\frac{32}{15}-x\)
e)\(\frac{x}{2}=\frac{8}{x}\)
f)\(\frac{x-5}{3}=\frac{34}{15}-\frac{-2}{5}\)
Chúc các cậu hoàn thành tốt bài trên.
\(\frac{15}{41}+\frac{-138}{41}< x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow\frac{-123}{41}< x< \frac{1.3+1.2+1}{6}\)
\(\Leftrightarrow-3< x< 1\)
\(\Rightarrow x\in\left\{-2;-1;0\right\}\)
\(\frac{x}{5}=\frac{15}{2}-\frac{51}{10}\)
\(\frac{x}{5}=\frac{15.5-51}{10}\)
\(\frac{x}{5}=\frac{24}{10}\)
\(\frac{x}{5}=\frac{12}{5}\)
\(x=12\)
\(\frac{2x}{3}-\frac{1}{9}=\frac{59}{36}+\frac{1}{4}\)
\(\frac{2x}{3}-\frac{1}{9}=\frac{59+9}{36}\)
\(\frac{2x}{3}-\frac{1}{9}=\frac{68}{36}\)
\(\frac{2x}{3}=\frac{68}{36}+\frac{1}{9}\)
\(\frac{2x}{3}=\frac{68}{36}+\frac{4}{36}\)
\(\frac{2x}{3}=2\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
1) Tính nhanh
a) A=\(\frac{3}{11\text{x}13}+\frac{3}{13\text{x}15}+\frac{3}{15\text{x}17}+...+\frac{3}{97\text{x}99}\)
b) B=\(\frac{4}{7\text{x}31}+\frac{6}{7\text{x}11}+\frac{9}{10\text{x}41}+\frac{7}{10\text{x}57}\)
3) Chứng tỏ phân số \(\frac{8n+5}{6n+4}\)tối giản với mọi số nguyên khác 0
\(A=\frac{3}{2}\times\left(\frac{1}{13\times11}+\frac{1}{13\times15}+\frac{1}{15\times17}+.....+\frac{1}{97\times99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+......+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\frac{8}{99}\)
\(A=\frac{4}{33}\)
b] \(\frac{A}{5}=\frac{4}{31.35}+\frac{6}{35.41}+\frac{9}{41.50}+\frac{7}{50.57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{35}+\frac{1}{35}-\frac{1}{41}+\frac{1}{41}-\frac{1}{50}+\frac{1}{50}-\frac{1}{57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{57}\)
\(\Rightarrow A=5\left(\frac{1}{31}-\frac{1}{57}\right)=\frac{130}{1767}\)
c] Ta đặt \(\left(8n+5,6n+4\right)=d\)
\(\Rightarrow\frac{8n+5\div d}{6n+4\div d}\Rightarrow4\times\left(6n+4\right)-3\times\left(8n+5\right)=\left(24n+16\right)-\left(24n+15\right):d\)\(\Rightarrow d=1\)
Vậy \(\frac{8n+5}{6n+4}\)là phân số tối giản
Giải phương trình: \(a,\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)\(b,\frac{x-5}{x-5}+\frac{x-6}{x-5}+\frac{x-7}{x-5}+...+\frac{1}{x-5}=4\)
a, \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)(1)
ĐKXĐ: \(\hept{\begin{cases}x+9\ne0\\x+10\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-9\\x\ne-10\end{cases}}}\)
(1)\(\Leftrightarrow\frac{9.\left(x+9\right)}{90}+\frac{10.\left(x+10\right)}{90}=\frac{9.\left(x+9\right)}{\left(x+9\right)\left(x+10\right)}+\frac{10.\left(x+10\right)}{\left(x+9\right)\left(x+10\right)}\)
\(\Leftrightarrow9.\left(x+9\right)+10.\left(x+10\right)=9.\left(x+9\right)+10.\left(x+10\right)\)
\(\Leftrightarrow9x+81+10x+100=9x+81+10x+100\)
\(\Leftrightarrow9x+10x-9x-10x=81+100-81-100\)
\(\Leftrightarrow0x=0\)
\(\Rightarrow x\in R\)trừ -9 và -10
a,\(\frac{-5}{9}+\frac{8}{15}+\frac{-2}{11}+\frac{4}{-9}+\frac{7}{15}\)
b,\(\frac{5}{13}+\frac{-5}{17}+\frac{-20}{41}+\frac{8}{13}+\frac{-21}{41}\)
c,\(\frac{1}{5}+\frac{-2}{9}+\frac{-7}{9}+\frac{4}{5}+\frac{16}{17}\)
d,\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+......+\frac{2}{99.101}\)
a,\(=\frac{-5}{9}+\frac{8}{15}+\frac{-2}{11}+\frac{-4}{9}+\frac{7}{15}\)
\(\left(\frac{-5}{9}+\frac{-4}{9}\right)+\left(\frac{8}{15}+\frac{7}{15}\right)+\frac{-2}{11}\)
=-1+1+-2/11
=0+-2/11
=-2/11
b,\(=\left(\frac{5}{13}+\frac{8}{13}\right)+\left(\frac{-20}{41}+\frac{-21}{40}\right)+\frac{-5}{17}\)
=1+-1+-5/17
=0+-5/17
=-5/17
c,\(=\left(\frac{1}{5}+\frac{4}{5}\right)+\left(\frac{-2}{9}+-\frac{7}{9}\right)+\frac{16}{17}\)
=1+-1+16/17
=0+16/17
=16/17
d,\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)
a.\(\frac{-5}{9}\)+\(\frac{8}{15}\)+\(\frac{-2}{11}\)+\(\frac{4}{-9}\)+\(\frac{7}{15}\)
=\(\frac{-5}{9}\)+\(\frac{4}{-9}\)+\(\frac{8}{15}\)+\(\frac{7}{15}\)+\(\frac{-2}{11}\)
=(\(\frac{-5}{9}\)+\(\frac{-4}{9}\))+(\(\frac{8}{15}\)+\(\frac{7}{15}\))+\(\frac{-2}{11}\)
=(-1)+1+\(\frac{-2}{11}\)
=0+\(\frac{-2}{11}\)
=\(\frac{-2}{11}\).