1.Tìm x,y biết :
( x-2)2012+I y2-9I2014= 0
Tìm x,y biết: 25 - y2 = 8 ( x - 2012 )2
$x,y$ là số nguyên hay có điều kiện gì không bạn nhỉ?
Câu 1: Tìm x, y, z biết:
(3x-5)^2010+(y-1)^2012+(x-z)^2014=0
Câu 2: tìm x, y thuộc N biết:
116-y^2=7(x-2013)^2
1/ Tìm x: (x-7)^x+1-(x-7)^x+11=0
2/ Tìm x: /x-2011y/+(y-1)^2012=0
3/ Tìm x,y:
a) /x+5/+(3y-4)^2012=0
b) (2x+1)^2+/2y-x/-8=12-5.2^2
4/
a) Tìm các số nguyên tố x,y sao cho: 51x+26y=2000
b) Tìm các số tự nhiện x,y biết: 7(x-2004)^2=23-y^2
c) Tìm x,y nguyên biết: x+y+3x-y=6
d) Tìm mọi sô nguyên tố thỏa mãn x^2-2y^2=1
Cho x>0; y>0; x+y=2012
a)Tìm GTLN của: B=(2x2+8xy+2y2)/(x2+2xy+y2)
b)Tìm GTNN của C=(1+2012/x)2+(1+2012/y)2
Tìm x, biết
a,(x-1).(y+2)=5
b, (x-2011)\(^2\)+| y + 2012|=0
\(\left(x-1\right)\left(y+2\right)=5\)
\(\Rightarrow\left(x-1\right);\left(y+2\right)\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
Xét bảng
x-1 | -1 | 1 | -5 | 5 |
x | 0 | 2 | -4 | 6 |
y+2 | -1 | 1 | -5 | 5 |
y | -3 | -1 | -7 | 3 |
Vậy cặp số xy là.....................
b,\(\text{Vì}\left(x-2011\right)^2\)là nguyên dương và \(|y+2012|\)cũng nguyên dương
mà \(\left(x-2011\right)^2+|y+2012|=0\)
\(\Rightarrow\orbr{\begin{cases}x-2011=0\\y+2012=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2011\\y=-2012\end{cases}}\)
Vậy \(\left(x;y\right)=\left(2011;-2012\right)\)
phần a, bạn Minh hàn băng làm rồi nha
a)
(x-1).(y+2)=5
\(\Rightarrow\)(x-1); (y+2) \(\in\)Ư(5) = { -5; -1; 1; 5}
Ta có bảng:
x-1 | -5 | -1 | 1 | 5 |
x | -4 | 0 | 2 | 6 |
y+2 | -1 | -5 | 5 | 1 |
y | -3 | -7 | 3 | -1 |
Vậy cặp số (x;y) thỏa mãn là: (-4;-3) hoặc (0;-7) hoặc (2;3) hoặc (6;-1)
b)
Vì (x-2011)\(^2\)\(\ge\)0 và | y+2012 | \(\ge\)0
Mà tổng của chúng = 0 \(\Rightarrow\)\(\hept{\begin{cases}\left(x-2011\right)^2\\\left|y+2012\right|=0\end{cases}=0}\)
(x-2011)\(^2\)= 0 \(\Rightarrow\)x-2011 = 0 \(\Rightarrow\)x=2011
| y + 2012 | = 0 \(\Rightarrow\)y+2012 = 0 \(\Rightarrow\)y=2012
Vậy x=2011 và y = 2012
Tìm x , Biết :
A, ( x- 1) . (x + 2) < 0
b) I x - 2012 I - 2015 = x
c) I x -1 I + 2x = 5
A,th1: x-1<0
x<1
x+2>0
x>-2
th2: x-1>0
x>1
x+2<0
x<-2
b, /x-2012/=x+2015
th1: x-2012=x+2015
0x=4027(vô lí)
0 tìm được x
th2: x-2012=-x-2015
2x=-3
x=-3/2
c,/x-1/=5-2x
th1: x-1=5-2x
3x=6
x=2
th2: x-1=2x-5
x=4
**** cho mk nha
Tìm x,y biết:
(x - 2)^ 2012 + | y^2 - 9|^2014 =0
Vì \(\hept{\begin{cases}\left(x-2\right)^{2012}\ge0;\forall x,y\\\left|y^2-9\right|^{2014}\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}\ge0;\forall x,y\)
Do đó \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=\pm3\end{cases}}\)
Vậy \(\left(x,y\right)=\left\{\left(2;3\right);\left(2;-3\right)\right\}\)
vì (x-2)^2012 \(\ge\)0 với mọi x (1)
\(|y^2-9|^{2014}\ge0\) với mọi y (2)
Mà (x-2)^2012 +\(|y^2-9|^{2014}=0\) (3)
Từ (1), (2), (3) suy ra (x-2)^2012 =0 và \(|y^2-9|^{2014}=0\)
suy ra x=2 và y^2=9
Suy ra x=2 và y=\(\pm\)3
\(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
\(\hept{\begin{cases}\left(x-2\right)^{2012}\ge0\forall x\\\left|y^2-9\right|^{2014}\ge0\forall y\end{cases}}\Rightarrow\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}\ge0\forall x;y\)
Dấu ''='' xảy ra <=> \(\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=\pm3\end{cases}}}\)
cho x>0 , y>0 , x+y =2012
a) Tìm Max \(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}\)
b) Tìm Min \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\)
\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)
\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)
\(\le2+\frac{4.1006^2}{2012^2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)
\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
...
bạn ơi, mik học \(A^2+B^2\ge\left(A+B\right)^2d\text{ấu}"="\) xảy ra <=> \(A.B\ge0\) mà bạn?
Tìm x, y, z biết (x - 1)2012 + (y - 2)2010+|z - 3| = 0