Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Linh
Xem chi tiết
Phú Hoàng Minh
Xem chi tiết
Thái Bùi Ngọc
Xem chi tiết
QuocDat
9 tháng 12 2018 lúc 20:01

\(\frac{x}{x^2-2x}=\frac{B}{4x^2-16}\Leftrightarrow\frac{x}{x\left(x-2\right)}=\frac{B}{\left(2x+4\right)\left(2x-4\right)}\)

\(\Leftrightarrow x\left(2x+4\right)\left(2x-4\right)=x\left(x-2\right).B\)

\(\Rightarrow B=\frac{x.\left[2\left(x+2\right)\right].\left[2\left(x-2\right)\right]}{x\left(x-2\right)}=\frac{x.2\left(x+2\right).2\left(x-2\right)}{x\left(x-2\right)}\)

\(B=\frac{x.4\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}=4\left(x+2\right)\)

kudo shinichi
9 tháng 12 2018 lúc 20:03

\(\frac{x}{x^2-2x}=\frac{B}{4x^2-16}\)

\(\frac{x}{x\left(x-2\right)}=\frac{B}{4.\left(x^2-4\right)}\)

\(\frac{1}{x-2}=\frac{B}{4.\left(x^2-4\right)}\)

\(\Rightarrow B.\left(x-2\right)=4.\left(x-2\right)\left(x+2\right)\)

\(B=4.\left(x+2\right)\)

\(B=4x+8\)

trần gia bảo
Xem chi tiết
Đỗ Thanh Huyền
Xem chi tiết
Nguyễn Huy Thắng
6 tháng 12 2016 lúc 23:20

\(\frac{4x^2}{x^2+2x}=\frac{A}{x}\)\(\Rightarrow\frac{x\cdot4x}{x\left(x+2\right)}=\frac{A}{x}\)

\(\Rightarrow\frac{4x}{x+2}=\frac{A}{x}\Rightarrow4x^2=A\left(x+2\right)\)\(\Rightarrow A=\frac{4x^2}{x+2}\)

 

Vương Quốc Anh
6 tháng 12 2016 lúc 23:25

A=\(\frac{4x^2}{x+2}\)

Nguyễn Huy Thắng
7 tháng 12 2016 lúc 11:59

đề đúng này hả /hoi-dap/question/139801.html nick kia giải r` kia

Be Carefully
Xem chi tiết
Nguyễn Quang Trung
16 tháng 3 2016 lúc 9:56

\(\frac{4x^2-16}{x^2+2x}=\frac{A}{x}\Rightarrow\frac{4.\left(x^2-4\right)}{x.\left(x+2\right)}=\frac{A}{x}\Rightarrow\frac{4.\left(x+2\right)\left(x-2\right)}{x.\left(x+2\right)}=\frac{A}{x}\Rightarrow\frac{4.\left(x-2\right)}{x}=\frac{A}{x}\Rightarrow A=\frac{4x\left(x-2\right)}{x}=4\left(x-2\right)=4x-8\)

Bùi Khánh Chi
Xem chi tiết
Hải Anh
27 tháng 3 2018 lúc 1:02

4(x-2)

Vô Danh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
16 tháng 12 2020 lúc 15:12

Bài 1.

a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)

b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)

\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)

c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)

Bài 3.

N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )

= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )

= 14x2 + 12x + 9 - 5x2 + 20

= 9x2 + 12x + 29

= 9( x2 + 4/3x + 4/9 ) + 25

= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x 

=> đpcm

Khách vãng lai đã xóa
Phương
Xem chi tiết
Lightning Farron
24 tháng 11 2016 lúc 12:16

a)\(\frac{x^2+5x+4}{x^2-1}=\frac{A}{x^2-2x+1}\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x-1\right)}=\frac{A}{\left(x-1\right)^2}\)

\(\Leftrightarrow\frac{x+4}{x-1}=\frac{A}{\left(x-1\right)^2}\). Nhân 2 vế ở tử với x-1 ta có:

\(x+4=\frac{A}{x-1}\Leftrightarrow A=\left(x-1\right)\left(x+4\right)=x^2+3x-4\)

b)\(\frac{x^2-3x}{2x^2-7x+3}=\frac{x^2+4x}{A}\)

\(\Leftrightarrow\frac{x\left(x-3\right)}{\left(2x-1\right)\left(x-3\right)}=\frac{x\left(x+4\right)}{A}\)

\(\Leftrightarrow\frac{x}{2x-1}=\frac{x\left(x+4\right)}{A}\).Nhân 2 vế ở mẫu với x ta có:

\(2x-1=\frac{x+4}{A}\)\(\Leftrightarrow\left(2x-1\right)\left(x+4\right)=A\Leftrightarrow A=2x^2+7x-4\)