3(n+2) chia het cho n-2
chứng minh
a ) 5^5 - 5^4 + 5^3 chia het cho 7
b) 3 ^n+2 - 2^n+2 + 3^n - 2^n chia het cho 10
c) 3 ^n+3 + 3^n+1 + 2^+3 + 2^n+2 chia het cho 6
d ) A = 2+2^2+2^3+....+ 2^12 chia het cho 7
g ) B= 2^35 + 2^36 + 2^37 + 2^38 chia het cho 3
k) C = 1 + 3 + 3^2 + ...+ 3^61
chung to C chia het cho 4
chung to C k chia het cho 3
h ) 5^n+2 + 3^n+2 - 3^n - 5^n chia het cho 24
gíúp mk vs ạ
n+9 chia het cho n+2
n-9chia het cho n-2
9n chia het cho n+2
n-1 chia het cho n-3
n+9chia hết cho n+2
=>n+2+7 chia hết cho n+2
ta có : n+2 chia hết cho n+2
ta thấy có 2 số 2 nên ta sẽ bỏ đi 1 số 2 và lấy :
7-2=5
z thì n=5
n-9chia het cho n-2
=>n-11-2 chia hết cho n-2
dấu số 11 đi ta có :
n-2 chia hết cho n-2
vì có 2 số 2 nên ta bỏ bớt 1 số 2 và :
11+2=14
z thì n = 14
n-1 chia het cho n-3
=>n -4-3 chia hết cho 3
dấu số 4 đi ,ta có :
n-3 chia hết cho n - 3
vì có 2 số 3 nên ta bỏ bớt 1 số 3 và :
3+4=7
z thì n = 7
câu còn lại rất dễ nưng đề phòng cậu tích người khác nên cậu chỉ cần tích tớ là tớ giải cho ,yên tâm vì tớ giải hết rồi càn gì ,chỉ còn mỗi một câu thôi
chứng minh hay là sao hả bạn thiếu đề trầm trọng
n + 9 chia hết cho n + 2
n + 2 + 7 chia hết cho n + 2
mà n + 2 chia hết cho n + 2
nên 7 chia hết cho n + 2
=> n = 5
tim so nguyen n
a)n+7 chia het cho n +2
b) 9-n chia het cho n-3
c)n^2 +n+17 chia het cho n +1
d) n ^ 2 +25 chia het cho n+2
e) 2n+7 chia het cho n+1
g)3n ^2 +5 chia het cho n -1
h) 3n+7 chia het cho 2n+1
i)2n^2 +11 chia het cho 3n+1
giup minh nha mai minh phai nop roi
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha
chung to rang :
a) 7.8.9.10 + 2.3.4.5.6 + 30 chia het cho 5
b) 2^3+2^4+2^5+2^6 chia het cho 3
c) 2^3+2^4+2^5+2^6 chia het cho 6
d) n.(n+215) chia het cho 2
e) (n+1).(n+2) chia het cho 2
g) 2016.n + 27 chia het cho 9
h)1.2.3+3.41+450 chia het cho 3
i) 3^3+3^4+3^5+3^6+3^7+3^8 chia het cho 4
k) 3^3+3^4+3^5+3^6+3^7+3^8 chia het cho 13
MONG CAC BAN GIUP MINH ,MINH RAT GAP!
a/ n+7 chia het cho n+1
b/3n+5 chia het cho n-2
c/ 4n+3 chia het cho 3n+1
d/n+5 chia het cho 3n-7
e/ n+2 chia het cho 5n-9
g/ 3n+5 chia het cho 4n+3
h/ 4n+1 chia het cho 7n-2
đề kiểu gì mà nhiều vậy pạn
kiểu vậy làm mệt lắm
CMR vs moi n thuoc N
a, n+2.n+7 chia het cho 2
b, 2(n+1).(n+2) chia het cho 2 va 3
c, n(n+1).(2n+1) chia het cho 2 va 3
Tim n thuoc N ,biet
a) 8 chia het cho (n-2)
b)(2.n+1) chia het cho (6-n)
c)3.n chia het cho (n-1)
d)(3.n+5) chia het cho (2.n+1)
Cac bn giup minh nhe !!
n+8 chia het cho n+3
2n+3 chia het cho n-2
n+2chia het cho n
3n+5 chia het cho n
n+8 chia het cho n+3
=> (n+3)+5 chia hết cho n+3
=> 5 chia hết cho n+3
=> n+3 \(\in\text{Ư}\left(5\right)=\left\{\text{±}1;\text{±}5\right\}\)
Ta có bảng :
n+3 | 1 | -1 | 5 | -5 |
n | -2 | -4 | 2 | -8 |
các bài còn lại cũng ntn thôi
tim so tu nhein n biet
n + 4 chia het cho n + 2
n + 7 chia het cho n - 3
2n + 5 chia het cho n - 2
3n + 7 chia het cho n + 1
n - 5 chia het co n
n+4:n+2
n+2+2:n+2
ma n+2:n+2
suy ra 2:n+2
n+2 là ước của 2
ước của 2 là :1,-1,2,-2
n+2=1 suy ra n=1-2 suy ra n=?
các trường hợp khác làm tương tự nhà và cả phần b nữa
3n+7:n+1
(3n+3)+3+7:n+1
3(n+1)+10:n+1
ma 3(n+1):n+1
suy ra 10:n+1 va n+1 thuoc uoc cua 10
den day lam nhu phan tren la duoc
nhớ **** mình nha
n + 4\(⋮\)n+2
=> ( n + 2) + 2 \(⋮\)n + 2 mà n + 2\(⋮\)n+2
=>2 \(⋮\)n+ 2
=> n +2\(\in\)Ư(2)={1;2}
=> n \(\in\){ -1:0} mà n \(\in\)N
=> n\(\in\){0}
Vậy n= 0
tim n thuoc Z :
a)n^2+1 chia het cho n+1
b)n^2-3 chia het cho n+2
c)*n+3 chia het cho n^2+2
a. \(\frac{n^2+1}{n+1}\in Z\)
Ta có : \(\frac{n^2+1}{n+1}=\frac{n\left(n+1\right)-n+1}{n+1}=n-1=0\)
\(\Leftrightarrow n=1\)
b. \(\frac{n^2-3}{n+2}\in Z\)
Ta có : \(\frac{n^2-3}{n+2}=\frac{n\left(n+2\right)-2n-3}{n+2}=n-\frac{2n+4-7}{n+2}=n-2-\frac{7}{n+2}\)
Để n^2 - 3 / n + 2 thuộc Z thì 7 / n + 2 thuộc Z, n thuộc Z
=> n + 2 thuộc { - 7 ; - 1 ; 1 ; 7 }
=> n thuộc { - 9 ; - 3 ; - 1 ; 5 }
a ) Để \(n^2+1⋮n+1\)
mà \(n\left(n+1\right)⋮n+1\)
\(\Rightarrow n\left(n+1\right)-n^2-1⋮n+1\)
\(\Rightarrow n^2+n-n^2-1⋮n+1\)
\(\Rightarrow n-1⋮n+1\)
\(\Rightarrow n+1-2⋮n+1\)
mà \(n+1⋮n+1\)
\(\Rightarrow2⋮n+1\left(n\inℤ\right)\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;-1;2-2\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)
b ) \(n^2-3⋮n+2\)
mà \(n\left(n+2\right)⋮n+2\)
\(\Rightarrow n\left(n+2\right)-n^2+3⋮n+2\)
\(\Rightarrow n^2+2n-n^2+3⋮n+2\)
\(\Rightarrow2n+3⋮n+2\)
\(\Rightarrow2n+4-1⋮n+2\)
\(\Rightarrow2\left(n+2\right)-1⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\)
\(\Rightarrow1⋮n+2\)
\(\Rightarrow n+2\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{-1;-3\right\}\)
c ) \(n+3⋮n^2+2\)
\(\Rightarrow n\left(n+3\right)⋮n^2+2\)
mà \(n^2+2⋮n^2+2\)
\(\Rightarrow n\left(n+3\right)-n^2-2⋮n^2+2\)
\(\Rightarrow n^2+3n-n^2-2⋮n^2+2\)
\(\Rightarrow3n-2⋮n^2+2\)
mà \(3\left(n+3\right)⋮n^2+2\left(n+3⋮n^2+2\right)\)
\(\Rightarrow3\left(n+3\right)-3n+2⋮n^2+2\)
\(\Rightarrow3n+9-3n+2⋮n^2+2\)
\(\Rightarrow11⋮n^2+2\left(n\in Z\right)\)
\(\Rightarrow n^2+2\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow n^2=9\)
\(\Rightarrow\orbr{\begin{cases}n=3\\n=-3\end{cases}}\)
Đối chiều đề bài , ta có \(n=-3\) thỏa mãn .