Gía trị nhỏ nhất của biểu thức \(\left(x^{2106}+5\right)^3\)
tìm giá trị nhỏ nhất của biểu thức A=\(\frac{\left|x-2016\right|+2017}{\left|x-2106\right|+2018}\)
Gía trị nhỏ nhất của biểu thức \(A=\left|\left(\left|x\right|+15\right)\right|-3\)
Xét: /x/ >/ 0 với mọi x
<=>/x/+15 >/ 15 với mọi x
<=>(/x/+15)-3 >/ 15-3=12 với mọi x
Do đó Amin=12
Dấu "="́ xảy ra<=>/x/=0 hay x=0
Vậy....
Gía trị nhỏ nhất của biểu thức A = \(\left|\left(\left|x\right|+15\right)\right|-3\)
Tìm gía trị lớn nhất và nhỏ nhất (nếu có) của các biểu thức:
A = \(\left|x+1\right|+5\)
Gía trị nhỏ nhất của biểu thức:
B=\(\frac{1}{2}\left(x-\frac{1}{2}\right)^2+\left|2x-1\right|-\frac{3}{2}\)
Tính gía trị nhỏ nhất của biểu thức P= \(x^2+y^2+xy-3\left(x+y\right)+3\)
\(2P=2x^2+2y^2+2xy-6\left(x+y\right)+6\)
\(2P=\left(x^2+2xy+y^2\right)+\left(x^2-6x+9\right)+\left(y^2-6y+9\right)-12\)
\(2P=\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2-12\)
VÌ \(\left(x-y\right)^2\ge0;\left(x-3\right)^2\ge0;\left(y-3\right)^2\ge0\)
==> GTNN của 2P=-12
==> GTNN của P=-12/2=-6 <=> x=y=3
Gía trị nhỏ nhất của biểu thức A = \(\frac{-9}{\left|x\right|+3}\) là
Gía trị nhỏ nhất của biểu thức D = \(\frac{12}{6-\left|x+1\right|}\)
Gía trị nhỏ nhất của biểu thức D = \(\frac{12}{6-\left|x+1\right|}\)
ta có:6-|x+1| < 6
=>\(\frac{12}{6-\left|x+1\right|}\ge\frac{12}{6}=2=>D_{min}=2<=>x+1=0=>x=-1\)
vậy....