cho tam giac ABC vuong tai A duong cao AH cmr AH.BC=AB.AC
lam on hay giup toi
CHO tam giac ABC vuong tai A duong cao AH biet BH=1cm ;CH=4cm tinh AH,AB.AC= ?
Áp dụng hệ thức lượng trong tam giác vuông
\(AH^2=BH.CH=1.4=4\Rightarrow AH=\sqrt{4}=2\left(cm\right)\)
\(BC=BH+CH=1+4=5\left(cm\right)\)
\(AB^2=BH.BC=1.5=5\Rightarrow AB=\sqrt{5}\left(cm\right)\)
\(AC^2=BC.CH=5.4=20\Rightarrow AC=\sqrt{20}=2\sqrt{5}\left(cm\right)\)
\(\Rightarrow AB.AC=\sqrt{5}.2\sqrt{5}=10\left(cm\right)\)
cho tam giac ABC vuong tai A duong cao AH
a) chung minh 2 tam giac HBA va HAC dong dang voi nhau
b) chung minh AH.BC=AB.AC
c) cho biet AB=12cm AC=16cm tinh o dai AH va dien tich tam giac ABC
d) gia su 1 duong thang a song song voi canh AC cat canh AB BC theo thu tu tai M va N xac dinh vi tri cua diem M de tu giac AMNC bang tam lan dien tich tam giac BMN
Cho tam giac ABC vuong tai A,ke duong phan giaC BD cua goc B .Duong thang A di qua va vuong goc voi BD cat BC tai E
a,Chung minh :BA = BE
b,Chung minh tam giac BED la tam giac vuong
c, So sanh AD va DC
co ai do lam on giup toi voi
cho tam giac ABC vuong tai A
\(\frac{AB}{AC}=\frac{5}{6}\), duong cao AH= 30 cm
TInh HB,HC
Lam on giup minh a
\(\Delta ABH\approx\Delta CAH\)\(\Rightarrow\frac{AB}{AC}=\frac{AH}{CH}\Rightarrow\frac{5}{6}=\frac{30}{CH}\Rightarrow CH=36\)
mà \(BH.CH=AH^2\Rightarrow BH=\frac{AH^2}{CH}=\frac{30^2}{36}=25\)
cho tam giaac abc can tai a .ve ah vuong goc voi bc tai h co ab = 5 cm , bc =6cm
a )chung minh 2 tam giac abh =ach
b ) tinh do dai ah
c) hay cho biet trong tam giac tren ahla duong nao trong cac duong con lai : duong trung tuyn , duong cao, duong phan giac , duong trung truc
(ve hinh giup mk luon nha . can gap . cam on nhiu)
a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông ACH, ta có:
AH là cạnh chung
AB=AC (gt)
Do đó: \(\Delta\)ABH=\(\Delta\)ACH (c.h-c.g.v)
\(\Rightarrow\) BH=HC (2 cạnh tương ứng)
Vậy BH=HC=BC:2=3cm
b) Áp dụng định lý PI-TA-GO vào \(\Delta\)vuông ABH, ta có:
\(AH^2+BH^2=AB^2\)
\(AH^2+3^2=5^2\)
\(AH^2=16\)
\(AH=4cm\)
c) Ta có: \(\widehat{A}_1=\widehat{A_2}\) (\(\Delta ABH=\Delta ACH\))
\(\Rightarrow\) AH là đường phân giác. (*)
Ta lại có: BH=CH (c/m trên)
\(\Rightarrow\) AH là đường trung tuyến. (**)
Từ (*) và (**), ta có:
AH thoả mãn 2 trong 4 loại đường.
\(\Rightarrow\) AH vừa là đường trung trực, trung tuyến, đường cao, phân giác
Cho tam giac ABC vuong tai A, duong cao AH, phan giac BE cat nhau tai D. CD cat AB tai F. CMR BF.cos^2C = AF.sinC
cho tam giac ABC vuong tai A . Ve duong cao AH, tren AH lay D, tren tia doi cua HA lay E sao cho HE bang AD. Duong thang vuong goc voi AH tai D cat AC tai F .CMR: EB vuong goc voi EF
cho tam giac ABC vuong tai A . duong cao AH . tia phan giac HAC cat BC tai D
CMR . tam giac ABD can
co phan giac goc B cat AH tai I . CMR. DI // AC
So sanh HD va DC
Giup mink !
Bai 1: Cho tam giac ABC co 3 goc nhon . Cac duong cao lan luot la AD,BE,CF cat nhau tai H
a.C/m tam giac AEF dong dang tam giac ABC
b.C/m tam giac AEF dong dang tam giac DBF
Bai 2: Cho tam giac ABC vuong tai A , AB=9 cm,AC=6 cm , duong cao AH , duong phan giac BD. Ke DE vuong goc BC (E thuoc BC), duong thang DE cat duong thang AB tai F .
a.Tinh BC,AH?
b.Chung minh tam giac EBF dong dang tam giac EDC
c.Goi I la giao diem cua AH va BD. Chung minh AB.BI=BH.BD
d.C/m BD vuong goc CF
e.Tinh ti so dien tich cua 2 tam giac ABC va tam giac BCD
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao