Cho tam giác ABC có BC=9cm, góc B = 60 độ, góc C=40 độ, đường cao AH. Tính AH, AB, AC
Cho tam giác ABC có BC = 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC ( làm tròn đến chữ số thập phân thứ 2)
Giúp với akk mình cần gấp
1, cho tam giác ABC có góc A tù, góc C = 30 độ, AB=29 , AC =40. Vẽ đường cao AH. Tính độ dài BH
2, Cho tam giác ABC có AB= 25 , AC = 26. Đường cao AH= 24cm . Tính độ dài BC theo 2 trường hợp
ssssssssssssssssssssssssssssssssssssssssssssssssss
tam giác ABC có góc A= 90 độ; AB= 6cm đường cao AH và HC= 9cm
a tính AC, BC và AH
b Tính các góc B và C của tam giác ABC
Cho tam giác ABC có góc B = 60 độ , góc C bằng 40 độ , cso BC = 6cm . Tính
a) Đường cao AH và cạnh AC
b) Tính diện tích tam giác ABC
a) Ta có: \(BH+HC=BC\)
\(\Leftrightarrow AH\cdot\cot B+AH\cdot\cot C=BC\)
\(\Leftrightarrow AH\cdot\left(\frac{\sqrt{3}}{3}+1,3\right)=BC\)
\(\Leftrightarrow AH\cdot1,9=10\)
\(\Rightarrow AH=5,3\left(cm\right)\)
\(\Rightarrow AC=\frac{AH}{\sin C}=\frac{5,3}{0,6}=8,2\left(cm\right)\)
b) Ta có: \(S_{ABC}=\frac{AH\cdot BC}{2}=\frac{5,3\cdot10}{2}=26,5\left(cm^2\right)\)
P/s: Các kết quả chỉ tương đối
Cho tam giác ABC có AB=9cm, góc A=30 độ, góc B=40 độ, đường cao CH. Tính CH, AH, BH
cho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBAcho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBA~ AbC, B tính độ dài BC và AH AbC, B tính độ dài BC và AH
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
cho tam giác abc vuông tại a có ab = 2a góc b = 60 độ tính ac , bc và đường cao ah
góc B=60 độ
=>góc C=30 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>2a/BC=1/2
=>BC=4a
=>AC=2a*căn 3
AH=AB*AC/BC=2a*2a*căn 3/4a=a*căn 3
cho tam giác abc vuông tại a, đường cao ah, ab=6cm, góc b =60 độ. tính ac,bc,ah,bh,ch
Xét ΔABC vuông tại A có sin C=AB/BC
=>6/BC=1/2
=>BC=12cm
AC=căn 12^2-6^2=6*căn 3(cm)
AH=6*6căn 3/12=3*căn 3(cm)
BH=AB^2/BC=3cm
CH=12-3=9cm
cho tam giác ABC vuông tại A có AB=9cm, AC=12cm. Kẻ đường cao AH và đường phân giác AI của tam giác ABC a) chứng minh tam giác HBA ~ tam giác ABC b) tính độ dài BC,BI c) kẻ HD vuông góc AB và HE vuông góc AC (D thuộc AB, E thuộc AC). chứng minh tam giác AED~ tam giác ABC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
=>ΔADE\(\sim\)ΔACB