Tính tổng \(M=-\frac{4}{1.5}-\frac{4}{5.9}-...-\frac{4}{\left(n+4\right)n}\)
Tính tổng:\(M:-\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n+4\right)n}.\)
Ta có : \(-\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-.....-\frac{4}{\left(n+4\right)n}\)
\(=-\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{n\left(4+n\right)}\right)\)
\(=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+......+\frac{1}{n}-\frac{1}{n+4}\right)\)
\(=-\left(1-\frac{1}{n+4}\right)\)
\(=-\left(\frac{n+4}{n+4}-\frac{1}{n+4}\right)\)
\(=-\frac{n+3}{n+4}\)
Tính tổng sau:
M=\(\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-.....-\frac{4}{\left(n-4\right).n}\)
Ai nhanh mk tick
M=\(\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)
\(M=1-\frac{1}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)
\(M=1-\frac{1}{5}-\frac{1}{5}+\frac{1}{n}\)
\(M=\frac{3}{5}+\frac{1}{n}\)
Mình chỉ giải đến đây thôi vì chẳng biết n bằng mấy cả
= - (1-1/5 +1/5 -1/9 +1/9 -1/13 +1/n + 1/n+4)
=-(1-1/n+4)
=-1+1/n+4
Phạm Thị Mai Anh ko có dấu( - )đằng trước đâu ạ
Tính M=\(-\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)
M = - ( 4/1.5 + 4/5.9 + ..................+ 4/(n-4).n
M = - (1-1/5 + 1/5 - 1/9 +..............+1/(n-4) - 1/n
M = -(1-1/n)
M = -1 + 1/n
M = -n + 1
tính :S=\(\frac{-4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}......-\frac{4}{\left(n-4\right)n}\left(n\in N\right)\)
\(S=\frac{-4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)
\(=-\left(\frac{1}{1}-\frac{1}{5}\right)-\left(\frac{1}{5}-\frac{1}{9}\right)-\left(\frac{1}{9}-\frac{1}{13}\right)-...-\left(\frac{1}{n-4}-\frac{1}{n}\right)\)
\(=-\frac{1}{1}+\frac{1}{5}-\frac{1}{5}+\frac{1}{9}-\frac{1}{9}+\frac{1}{13}-...-\frac{1}{n-4}+\frac{1}{n}\)
\(=-\frac{1}{1}+\frac{1}{n}=\frac{1}{n}+1\)
Tính S=\(\frac{-4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}......-\frac{4}{\left(n-4\right)n}\left(n\in N\right)\)
Bài 2 : Tính giá trị biểu thức :
E = - \(\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.11}-..........-\frac{4}{\left(n-4\right)n}\)
Trả lời :
\(E=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{n\left(n+4\right)}\right)\)
\(\Rightarrow E=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n}-\frac{1}{n+4}\right)\)
\(\Rightarrow E=-\left(1-\frac{1}{n+4}\right)\)
\(\Rightarrow E=1+\frac{1}{n+4}\)
P/s : Sai thì thông cảm nha chị. Dạng này lâu chưa làm nên không nhớ rõ.
\(E=-\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.11}-...-\frac{4}{\left(n-4\right)n}\)
\(\Rightarrow E=-\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.11}+...+\frac{4}{\left(n-4\right)n}\right)\)
\(\Rightarrow E=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)
\(\Rightarrow E=-\left(1-\frac{1}{n}\right)\)
\(\Rightarrow E=-1+\frac{1}{n}\)
cảm ơn các bạn rất nhìu
TÍNH
M =-\(\frac{4}{1.5}\) - \(\frac{4}{5.9}\)- \(\frac{4}{9.13}\)-.......- \(\frac{4}{\left(n+4\right)n}\)
Ta có :
\(M=-\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n+4\right)n}\)
\(\Leftrightarrow\)\(M=-\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n+4}-\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(M=-\left(1-\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(M=-\frac{n}{n}+\frac{1}{n}\)
\(\Leftrightarrow\)\(M=\frac{-n+1}{n}\)
Vậy \(M=\frac{-n+1}{n}\)
S=\(\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-..............-\frac{4}{\left(n-4\right)^n}\) (n thuộc N)
GIÚP MK VS MK ĐANG CẦN GẤP
\(\text{Đề bài sai : }\frac{4}{\left(n-4\right)^n}->\frac{4}{\left(n-4\right)^n}\)
\(\text{Ta có :}\)
\(S=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right)n}\)
\(=\left(\frac{1}{1}-\frac{1}{5}\right)-\left(\frac{1}{5}-\frac{1}{9}\right)-...-\left(\frac{1}{n-4}-\frac{1}{n}\right)\)
\(=\frac{1}{1}-\frac{1}{5}-\frac{1}{5}+\frac{1}{9}-...-\frac{1}{n-4}+\frac{1}{n}\)
\(=\frac{1}{1}-\frac{1}{5}-\frac{1}{5}+\frac{1}{n}\)
\(=\frac{3}{5}+\frac{1}{n}\)
\(=\frac{3}{5}+\frac{1}{n}\)
\(=\frac{3n+5}{5n}\)
\(\text{Vậy ...}\)
Tính:
a) S1=\(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{99.100}\)b) S2=\(-\frac{4}{1.5}-\frac{4}{5.9}-...-\frac{4}{\left(n-4\right)n}\)a) S1 = \(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{99.100}\)
= \(-\frac{1}{1}-\frac{1}{2}-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{99}-\frac{1}{100}\)
= \(\frac{-1}{1}-\frac{1}{100}\)
= \(-\frac{101}{100}\)