Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NNNNNNNNN
Xem chi tiết
Phạm Thị Mai Bình
7 tháng 7 2017 lúc 9:47

giả sử abc và ab+bc+ca không nguyên tố cùng nhau 
=> tồn tại d là số nguyên tố và d là ước chung của abc và ab+bc+ca 
abc chia hết cho d mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 TH: 
TH1: a chia hết cho d => ab,ac chia hết cho d 
mà ab+bc+ca chia hết cho d 
=> bc chia hết cho d => b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
TH2: b chia hết cho d => ba,bc chia hết cho d 
mà ab+bc+ca chia hết cho d 
=> ac chia hết cho d => a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
TH3: c chia hết cho d => ca,cb chia hết cho d 
mà ab+bc+ca chia hết cho d 
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
vậy: giả thiết đưa ra là sai 
kết luận: abc và ab+bc+ca nguyên tố cùng nhau

Nhân Thiện Hoàng
10 tháng 2 2018 lúc 20:29

kho qua

huong vu
Xem chi tiết
Dương Minh Tiến
28 tháng 8 2015 lúc 20:29

 c chia hết cho d => ca,cb chia hết cho d 
mà ab+bc+ca chia hết cho d 
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
vậy: giả thiết đưa ra là sai 
kết luận: abc và ab+bc+ca nguyên tố cùng nhau

Ngọc Anh
Xem chi tiết
Doãn Thanh Phương
10 tháng 2 2018 lúc 20:39

 c chia hết cho d => ca,cb chia hết cho d 
mà ab+bc+ca chia hết cho d 
\(\Rightarrow\)ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
vậy: giả thiết đưa ra là sai 
Kết luận: abc và ab+bc+ca nguyên tố cùng nhau

Ngọc Anh
10 tháng 2 2018 lúc 20:46

Doan Thanh Phuong đề bài yêu cầu khác bạn ạ

Kiệt Nguyễn
21 tháng 2 2019 lúc 14:03

                             Giải

Giả sử \(\left(abc,ab+bc+ca\right)\ne1\)
\(\Rightarrow\)Tồn tại d là số nguyên tố và  \(d\inƯC\left(abc,ab+bc+ca\right)\)
\(abc⋮d\)mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 trường hợp
TH1: a chia hết cho d \(\Rightarrow\) ab,ac chia hết cho d 
mà ab + bc + ca chia hết cho d 
\(\Rightarrow\) bc chia hết cho d \(\Rightarrow\) b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
TH2: b chia hết cho d \(\Rightarrow\) ba,bc chia hết cho d 
mà ab+bc+ca chia hết cho d 
\(\Rightarrow\) ac chia hết cho d \(\Rightarrow\) a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
TH3: c chia hết cho d \(\Rightarrow\) ca,cb chia hết cho d 
mà ab+bc+ca chia hết cho d 
\(\Rightarrow\) ab chia hết cho d \(\Rightarrow\) a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
Vậy: giả thiết đưa ra là sai 
Kết luận: abc và ab + bc + ca nguyên tố cùng nhau

Xem chi tiết
Nguyễn Yến Nhi
25 tháng 2 2020 lúc 14:47

mk cx hok bồi nek

sao thấy đề bồi này nó cứ dễ sao ấy

Khách vãng lai đã xóa
Hoàng Tử Lớp Học
Xem chi tiết
Nguyễn Thị Hương
Xem chi tiết
Hùng Hoàng
30 tháng 10 2015 lúc 23:29

a=d.x

b=d.y

Nếu x và y ko nguyên tố cùng nhau 

Gọi ƯCLN (x;y) là z(z khác 1)

x=z.t     y=z.w

a=d.z.t

b=d.z.w

ƯCLN(a;b) là d.z Vậy trái giả thiết của đề bài 

Vậy x và y nguyên tố cùng nhau

hoàng ngọc hà
Xem chi tiết
Nguyễn Huyền Trang
6 tháng 1 2017 lúc 19:44

Đặt a=12.a

      b=12.b

  UCLN(a,b)=1

 Ta có : a.b=2016

   12.a.12.b=2016

 (12.12).a.b=2016

      144.a.b=2016

            a.b=2016:144

            a.b=14

Vì a.b=14 và UCLN(a,b)=1 nên

(a=1;b=14);(a=14;b=1);(a=2;b=7);(a=7;b=2)

suy ra (a=12;b=168);(a=168;b=12);(a=24;b=84);(a=84;b=24)

Sang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 7 2018 lúc 17:59

Giả sử n1, n2, …n15 là các số thoả món yờu cầu bài toỏn. Giả sử tất cả chỳng là hợp số. Gọi pi là ước nguyên tố nhỏ nhất của ni (i = 1, 2, …, 15).

Gọi p là số lớn nhất trong các số  p1, p2, …,p15

Do các số n1, n2, …n15  là đôi nguyên tố cùng nhau nên các số  p1, p2, …,p15  khỏc nhau tất cả.

Số nguyên tố thứ 15 là số 47 (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 ) ta có p ≥ 47  . Đối  với số n có ước nguyên tố nhỏ nhất là p thì p ≤ n   suy ra  n ≥ p 2   ≥ 47 2 > 2004  (vụ lớ)

Vậy trong 15 số  n1, n2, …n15  ta Tìm được một số nguyên tố.