quy đồng
\(\frac{a-x}{6ax^2-a^2x-2a^3}\) và \(\frac{a+x}{3x^3+4ax^2-4a^2x}\)
Quy đồng mẫu phân thức sau :
1.\(\frac{a-x}{6x^2-ax-2a^2};\frac{a+x}{3x^2+4ax-4a^2}\)
Quy đồng mẫu các phân thức sau:(có thể tính luôn càng tốt ạ)
a) \(\dfrac{a+x}{a^2x}\);\(\dfrac{x+b}{x^2b}\);\(\dfrac{b+a}{b^2a}\)
b) \(\dfrac{a-x}{6x^2-ax-2a^2}\);\(\dfrac{a+x}{3x^2+4ax-4a^2}\)
c) \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)
Mn giúp mik vs nhaaa! Tầm trc cmai nhoaaa!
Thanks mn trc ạ!!!
Giup mik với mai mình phải nộp rồi//
Bai1:Quy đồng mẫu thức
a) a+x/ 6x^2 -ax -2a^2, a-x/ 3x^2 +4ax -4x
b) a+b/ a^2 -bc + ac -ab, a-c/ a^2 -bc +ac -b^2
c) x/ x^3-27, x+2/ x^2 -6x +9, x-1/ x^2+3x +9x
d) x+2/ x^2 -3x +2, x/ -2x^2+5x -3, 2x+1/ -2x^2+7x-6
Bài 2 quy đồng mẫu thức các phân thức( có thể đổi dấu)
a) x-1/ 2x+2, x+1/ 2x-2, 1/ 1-2x^2
b) 2x-1/x+a, a-x/-x^2+ax-a62, 2x^2-1/ x^3+a^3
c) x+1/ 2x^2-x^4, x/x^4+2x^2+4, 2x-1/x^7- 8x
d) 2x/x^2 -3xy+2y^2, y/-3x^2 +4xy-y^2, 4xy/ 3x^2-7xy+ 2y^2
Tính: \(\frac{a-x}{6x^2-ãx-2a^2}-\frac{a+x}{4a^2-4ax-3x^2}\)
Giúp mình với !!!
Ta xét mẫu số phân số thứ nhất:
6x^2-ax-2a^2
=6x^2+3ax-4ax-2a^2
=3x(2x+a)-2a(2x+a)
=(3x-2a)(2x+a)
Ta xét mẫu số phân số thứ hai:
4a^2-4ax-3x^2
=4a^2+2ax-6ax-3x^2
=2a(2a+x)-3x(2a+x)
=(2a-3x)(2a+x)
=> Biểu thức=\(\frac{a-x}{\left(2x+a\right)\left(3x-2a\right)}-\frac{a+x}{\left(2a-3x\right)\left(2a+x\right)}\)
=\(\frac{a-x}{\left(2x+a\right)\left(3x-2a\right)}+\frac{a+x}{\left(3x-2a\right)\left(2a+x\right)}\)
=\(\frac{2a}{ \left(2x+a\right)\left(3x-2a\right)}\)
Giải các phương trình sau :
a) \(x^4-\left(x^2+2\right)=4\)
b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
c) \(\frac{2x-10}{4}=5+\frac{2-3x}{6}\)
d) \(\frac{2x}{\left(x-3\right)\left(x+1\right)}+\frac{x}{2\left(x-3\right)}=\frac{x}{2x+2}\)
e) \(\left(\frac{x+2}{x}\right)^2+\left(\frac{x}{x+2}\right)^2=2\)
f) \(\left(x-a\right)\left(x+a\right)+2x+a^2=-1\)
g) \(\frac{x-a}{2a}+\frac{x-2a}{3a}+\frac{x-3a}{4a}+\frac{x-4a}{5a}=-4\)
h) \(\left(x^2-3x+4\right)^2=\left(x^2-2x+3\right)\left(x^2-4x+5\right)\)
i) \(\frac{x^2-4x+12}{x^2-4x+6}=x^2-4x+8\)
2 Quy đồng mẫu
a, \(\frac{5}{3x^2-6x+3}và\frac{x}{2x^2-2}\)
b, \(\frac{1}{2x^2+2x+2}và\frac{1}{x^2+6x-7}\)
GIÚP MÌNH NHÉ!!
Thực hiện phép tính:
a) \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
b) \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
c) \(\frac{4a^2-3a+5}{a^3-1}-\frac{1-2a}{a^2+a+1}-\frac{6}{a-1}\)
d) \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)
e) \(\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
f) \(\frac{5}{a+1}-\frac{10}{a-\left(a^2+1\right)}-\frac{15}{a^3+1}\)
a) \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}=\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x.x}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}=\frac{0}{x\left(x-3\right)}=0\)
b) \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
\(=\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10+8}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{1\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\frac{-10x+8}{\left(3x-2\right)\left(3x+2\right)}\)
\(\frac{3x+2-12x+2+10x-8}{\left(3x-2\right)\left(3x+2\right)}=\frac{x-4}{\left(3x-2\right)\left(3+2\right)}\)
c) \(\frac{4a^2-3a+5}{a^3-1}-\frac{1-2a}{a^2+a+1}-\frac{6}{a-1}\)
\(=\frac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{2a-1}{a^2+a+1}-\frac{6}{a-1}\)
\(=\frac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\frac{6\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{4a^2-3a+5+2a^2-2a-a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{-12}{\left(a-1\right)\left(a^2+a+1\right)}\)
d) \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}=\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}=\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{x^2-6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{\left(x-3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{x-3y}{x\left(x+3y\right)}\)
e) \(\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
\(=\frac{3x-2}{\left(x-1\right)^2}-\frac{6}{\left(x-1\right)\left(x+1\right)}-\frac{3x-2}{\left(x+1\right)^2}\)
\(=\frac{\left(3x+2\right)\left(x+1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}-\frac{6\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x-1\right)\left(x+1\right)}-\frac{\left(3x-2\right)\left(x-1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}\)
\(=\frac{3x^3+6x^2+3x+2x^2+4x+2-6x^2+6-3x^3+6x^2-3x+2x^2-4x+2}{\left(x-1\right)^2\left(x+1\right)^2}\)
\(=\frac{8x^2+10}{\left(x-1\right)^2\left(x+1\right)^2}\)
f) \(\frac{5}{a+1}-\frac{10}{a-\left(a^2+1\right)}-\frac{15}{a^3+1}=\frac{5a^2}{a^3+1}+\frac{10}{a^3+1}-\frac{15}{a^3+1}\)
\(=\frac{5a^2+10-15}{a^3+1}=\frac{5a^2-5}{a^3+1}\)
a, Rút gọn phân thức \(\frac{2x^2+4x}{x+2}\)
b, Quy đồng mẫu thức hai phân thức:\(\frac{3x}{2x+4}và\frac{x+3}{x^2-4}\)
a,\(\frac{2x^2+4x}{x+2}\)=\(\frac{2x\left(x+2\right)}{x+2}\)\(=2x\)
b, \(\frac{3x}{2x+4}\)=\(\frac{3x^2-6x}{2\left(x+2\right)\left(x-2\right)}\)
\(\frac{x+3}{x^2+4}\)=\(\frac{2x+6}{2\left(x-2\right)\left(x+2\right)}\)
tick mình nhé!!
\(\left(a^2-4a^2\right)\left(\frac{2a}{a^2-4x^2}\right)+\frac{x+3}{2x^2+6x-ã-3a}\)