cho hình chóp SABCD có đáy ABCD là hình bình hành .M;N lần lượt là trung điểm của SB và CD
1.Tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
2. Chứng minh MN // (SAD)
3.xác định giao điểm I của MN và (SAC) .tính tỉ số IM/ IN
giúp mình với ạ!!!!!!
cho hình chóp sabcd có đáy là hình bình hành abcd. m , n , e là trung điểm của ab , bc,sd. tìm thiết diện tạo bởi mặt phẳng mne và hình chóp
Trong mp (ABCD), nối MN kéo dài lần lượt cắt AD tại F và DC tại G
Trong mp (SAD), nối FE cắt SA tại P
Trong mp (SCD), nối EG cắt SC tại Q
\(\Rightarrow\) Ngũ giác MNQEP là thiết diện của (MNE) và chóp
cho hình chóp SABCD có đáy ABCD là hình bình hành tâm O , M là trung điểm CD , DN =2SN (N thuộc SD), chứng minh rằng SO//(AMN)
Trong tam giác SBD, MN là đường trung bình \(\Rightarrow MN||BD\)
\(\Rightarrow MN||\left(ABCD\right)\)
Trong mp (ABCD), qua E kẻ đường thẳng song song BD cắt BC tại F và cắt AD kéo dài tại G
Trong mp (SAD), nối GN kéo dài cắt SA tại P
Ngũ giác PNEFM là thiết diện của (MNE) và chóp
Cho hình chóp SABCD, đáy là hình bình hành ABCD. Gọi M,N lần lượt là trung điểm SA,CD. Chứng minh MN // (SBC)?
help pls
Trong mp (ABCD), nối AN kéo dài cắt BC kéo dài tại E
\(\Rightarrow E\in\left(SBC\right)\)
Do AD song song BE, áp dụng Talet:
\(\dfrac{AN}{NE}=\dfrac{ND}{NC}=1\Rightarrow AN=NE\Rightarrow\) N là trung điểm AE
\(\Rightarrow MN\) là đường trung bình tam giác SAE
\(\Rightarrow MN//SE\Rightarrow MN//\left(SBC\right)\)
Cho hình chóp SABCD có đáy ABCD là hình bình hành tâm O, gọi I là trung điểm của cạnh SC. Mệnh đề nào sau đây sai?
A. IO//(SAB)
B. IO//(SAD)
C. Mặt phẳng (IBD) cắt hình chóp SABCD theo thiết diện là một tứ giác.
D. (IBD)//(SAC) = IO
Cho hình chóp SABCD có đáy ABCD là hình bình hành tâm O, gọi I là trung điểm của cạnh SC. Mệnh đề nào sau đây sai?
Cho hình chóp SABCD có đáy ABCD là hình bình hành. G, H lần lượt là trọng tâm tam giác SBC, tam giác SCD. Tìm giao tuyến (SGH) và (SAD)
Cho hình chóp SABCD có đáy ABCD là hình bình hành, mặt bên SAB là tam giác đều cạnh a, mp (SAB) vuông góc với đáy, thể tích của khối chóp bằng a 3 . Tính khoảng cách giữa hai đường thẳng SA và CD
A. a 3
B. 2 a 3
C. 2 a 3
D. a 2
Cho khối chóp tứ giác SABCD có thể tích V, đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm các cạnh SB, BC, CD, DA. Tính thể tích khối chóp M.CNQP theo V.
A. 3 V 4
B. 3 V 8
C. 3 V 16
D. V 16
Phương pháp:
Công thức tính thể tích khối chóp có diện tích đáy S và chiều cao h là: V = 1 3 S h
Cách giải:
Cho hình chóp SABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây là khẳng định đúng?
A. d qua S và song song với BD.
B. d qua S và song song với BC.
C. d qua S và song song với AB.
D. d qua S và song song với DC.