Cho tam giác ABC, góc A = 90° Biết AH = 12cm, HC = 9cm Tính HB, BC, AB, Ac
Cho tam giác ABC. Kẻ AH vuông góc với BC ( H thuộc BC). Biết AH = 12cm, HB =9cm, Hc = 20cm
a) Tính AB? AC?
b) Tam giác ABC có phải tam giác vuông không? Vì sao?
1, Cho tam giác ABC ( góc A=90 độ). Từ trung điểm I của cạnh AC kẻ đường thẳng vuông góc với cạnh huyền BC tại D. C/m: BD^2-CD^2=AB^2
2, Cho tam giác ABC( góc A=90 độ). phân giác AD, đường cao AH. biết BD=15cm, CD=20cm, tính BH, CH
3, Cho tam giác ABC( góc A=90 độ). AB=12cm, AC=16cm, phân giác AD, đường cao AH. tính HB,HC,HD
4, Cho tam giác ABC( góc A=90 độ) đường cao AH. Tính chu vi tam giác ABC biết AH= 14 cm, HB/HC=1/4
giúp đỡ mình nhé, mình đang cần gấp
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Cho tam giac ABC vuông tại A ,biết AC=12cm;AB=9cm;AH=7,2cm;HC=5,4cm;HB=9,6cm. Đường cao AH. Cho tia phân giác của góc BAC cắt BC tại D
Tính BD và CD
cho tam giác ABC vuông tại A .kẻ AH vuông góc với BC . biết HB = 9cm,HC =16 cm;AC=5cm . tính AH;AB
TA CÓ BH + HC = BC
=> BC = 9+16=25
THEO ĐỊNH LÝ PITAGO XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ
\(BC^2=AB^2+AC^2\)
\(AB^2=BC^2-AC^2\)
\(AB^2=25^2-5^2\)
......
AH TƯƠNG TỰ
Cho tam giác ABC vuông tại A, kẻ đường cao AH
a)Biết HB=50cm, HC= 8cm. Tính chu vi tam giác ABC
b)Biết AC=12cm, HC=6cm. Tính AH, AB
c)Biết AH=12cm, BC=25cm. Tính AB+AC
Em xin cảm ơn ạ❤
a) \(AH^2=HB.HC=50.8=400\)
\(\Rightarrow AH=20\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)
mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)
\(\Rightarrow AB.AC=20.58=1160\)
Theo Pitago cho tam giác vuông ABC :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)
\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)
\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)
\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)
Chu vi Δ ABC :
\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)
Cho tam giác ABC, góc A=90 độ, AH vuông góc với BC biết AH=30cm , AB/AC =5/6. tính hb hc
Xét \(\Delta ABH\)và \(\Delta CAH\)có
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với góc HAC)
suy ra: \(\Delta ABH~\Delta CAH\) (g.g)
suy ra: \(\frac{AB}{AC}=\frac{AH}{CH}=\frac{BH}{AH}\)
hay \(\frac{5}{6}=\frac{30}{CH}=\frac{BH}{30}\)
suy ra: \(CH=\frac{6.30}{5}=36\)
\(BH=\frac{5.30}{6}=25\)
Cho tam giác ABC,kẻ AH vuông góc với BC.Biết HB=9cm,AH=12cm,HC=16cm
a/tính AB,AC
b/CM tam giác ABC vuông
Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\)
Theo định lí Py ta go ta cs :
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=12^2+9^2\)
\(\Leftrightarrow AB^2=225\)
\(\Leftrightarrow AB=15cm\)
Xét \(\Delta AHC\) có \(\widehat{AHC}=90^0\)
Theo định lí Py ta go ta có :
\(AC^2=HC^2+AH^2\)
\(\Leftrightarrow AC^2=16^2+12^2\)
\(\Leftrightarrow AC^2=400\)
\(\Leftrightarrow AC=20cm\)
b/ Ta có :
\(HB+HC=BC\)
\(\Leftrightarrow BC=9+16=25cm\)
Lại có :
\(AB^2+AC^2=15^2+20^2=225+400=625cm\)
\(BC^2=25^2=625cm\)
\(\Leftrightarrow AB^2+AC^2=BC^2\)
Theo định lí Py ta go đảo thì tam giác ABC vuông tại A
Cho tam giác ABC (góc A=90⁰), đường cao Ah, Ab=9cm, Ac=12cm. a) Chứng minh tam giác HBA đồng dạng với tam giác ABC b) Tính HA,HB, diện tích tam giác HBA c) Kẻ đường phân giác HK,HI của góc AHB, góc AHC, chứng minh HI song song BC
Với 9 tia chung gốc số góc tạo thành là
A. 16 góc
B. 72 góc
C. 36 góc
D. 42 góc
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
HA=9*12/15=108/15=7,2cm
HB=9^2/15=81/15=5,4cm
\(S_{HBA}=\dfrac{1}{2}\cdot7.2\cdot5.4=19.44\left(cm^2\right)\)
câu 1 Cho tam giác ABC có các góc B, C nhọn. Kẻ AH vuông góc với BC. Biết AB = 20cm, BH = 16cm, HC = 5cm. Tính AH, AC.
câu 2 Cho tam giác ABC có các góc B, C nhọn. Kẻ AH vuông góc với BC, biết AC = 15cm, HB = 5cm, HC = 9cm . Tính độ dài cạnh AB.
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm