Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=\dfrac{144}{9}=16\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AB^2=12^2+16^2=400\)
hay AB=20(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=CH^2+AH^2\)
\(\Leftrightarrow AC^2=9^2+12^2=225\)
hay AC=15(cm)
Ta có: BH+CH=BC
nên BC=9+16=25(cm)
Theo hệ thức lượng trong tam giác vuông:
• `AH^2=HB.HC => HB=12^2 : 9=16(cm)`
`=> BC=HB+HC=9+16=25(cm)`
• `AB^2=HB.BC=>AB=\sqrt(16.25)=20(cm)`
•`AC^2=HC.BC=>AC=15(cm)`
Vậy...